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Abstract

We have observed reproducible fluctuations of the Coulomb drag resistivity, originating from coherent scattering of electrons in two

layers. The fluctuations are observed as functions of both the carrier density of each layer, and perpendicular magnetic field. The

magnitude of the fluctuations is much larger than expected from the theory of ‘diffusive’ drag and the temperature dependence is stronger

than theoretically predicted. We account for this enhancement by considering the ‘ballistic’ nature of the drag in our system. We also

present results on the fluctuations at large magnetic fields, where the lowest Landau level is half filled so that coherent drag occurs

between composite fermions. The magnitude of fluctuations is seen to be greatly enhanced compared with the small field case, although

fluctuations of composite fermion drag show much better agreement with the theory developed for the ‘diffusive’ drag regime.

r 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Coulomb drag is the phenomenon where momentum is
transferred between electrons in electrically isolated con-
ductors via electron–electron (e–e) interactions. A typical
measurement circuit is shown in Fig. 1: a current I1 is
passed through one of the layers, the ‘active’ layer, of a
system composed of two parallel 2DEGs. Momentum
transfer between electrons in the active layer and the
second ‘passive’ layer then results in a voltage V 2. Thus, by
measuring this voltage in the passive layer, one can
calculate the Coulomb drag resistivity, rD ¼ �V 2W=I1L

(W and L are the sample width and length, respectively),
which is a direct measure of the strength of e–e interactions
between the layers.

Measurements of Coulomb drag were first suggested
several decades ago [1,2], although it was some time before
samples of sufficient quality and complexity could be made
in order to observe this effect. Since then, much experi-
mental and theoretical work has been done concerning
e front matter r 2007 Elsevier B.V. All rights reserved.
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drag (for a review, see Ref. [3]), including recent observa-
tions of Bose-condensation of interlayer excitons [4],
Wigner crystal formation in 1D wires [5], and large
enhancements of the drag near n ¼ 1

2
[6]. Of particular

relevance to this paper are the theories predicting the
effects of coherent transport in the layers on drag—
reproducible drag resistivity fluctuations, analogous to
universal conductivity fluctuations (UCF) seen in single-
layer samples. We earlier reported the first observation of
these fluctuations, and their measurement as a function of
temperature [7]. Here we describe these measurements in
greater detail, as well as the study of their behaviour as a
function of the conductivity of the layers constituting the
double-layer system. We also report the study of Coulomb
drag fluctuations in the first half-filled Landau level at
strong magnetic fields.
The origin of fluctuations in the drag resistivity is similar

to those seen in the single-layer resistivity: interference of
electron waves over the coherence length, Lj. However, the
fluctuations in the drag do differ significantly from UCF.
Whilst the fluctuations of the drag are small in absolute
magnitude (typically, for our samples, DrD�10mO, whilst
Dr�100mO) the fluctuations of the drag can greatly exceed
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Fig. 1. Drag resistivity as a function of passive-layer carrier concentration

for different temperatures: T ¼ 5; 4; 3; 2; 1; 0:4, and 0.24K, from top to

bottom. Inset: schematic of drag measurement, where I1 is the current in

the active layer and V 2 is the voltage in the passive layer. (Figure adapted

from Ref. [7].)
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Fig. 2. Drag resistivity measured at low temperatures as a function of

passive-layer concentration; T ¼ 1, 0.4, and 0.24K, from top to bottom.

Inset: rD as a function of T for two values of n2 denoted by the dotted

lines in panel A; solid line is the expected T2 dependence of the average

drag. (B) rD as a function of B; T ¼ 0:4; 0:35, and 0.24K, from top to

bottom. (Graphs for higher T are vertically offset for clarity.) Single-layer

concentration for each layer is 5:8� 1010 cm�2. (Figure adapted from

Ref. [7].)
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the average value of drag resistivity. Thus, as the
concentration or magnetic field are varied, the drag
resistivity changes its sign randomly, but reproducibly,
between negative and positive.

Our explanation of the giant drag fluctuations takes into
account that, unlike UCF, the drag fluctuations are not
only an interference but also fundamentally an interaction
effect. In conventional drag structures the electron mean
free path l is much larger than the separation d between the
layers, and therefore large momentum transfers _q between
electrons in the layers become essential. According to the
quantum mechanical uncertainty principle, DrDq�1,
electrons interact over small distances Dr5l when ex-
changing large values of momentum. As a result the local
properties of the layers, such as the local density of electron
states (LDoS), become important in the interlayer e–e
interaction. These local properties at the scale Dr5l

exhibit strong fluctuations [8] that directly manifest
themselves in the fluctuations of the Coulomb drag, which
are enhanced compared with the prediction for the
diffusive regime, l5d [9].

2. Samples

The samples studied in this work are AlGaAs–GaAs
double-layer structures, where the carrier concentration
of each layer can be independently controlled by
gate voltage over the range n ¼ 2:0–0:4� 1011 cm�2, with
a corresponding change in the mobility from 6:7 to
1:2� 105 cm2 V�1 s�1. The GaAs quantum wells are 200 Å
in thickness, and are separated by an Al0:33Ga0:67As layer
of thickness 300 Å. Each layer has a Hall-bar geometry,
60mm in width and with a distance between the voltage
probes of 60mm.

3. Weak B-field

Fig. 1 shows the drag resistivity dependence upon the
carrier concentration of the passive layer for different
temperatures in the temperature range above 1K, where
the conventional T2 and n�1:52 dependences [10,11] are seen.
However, as the temperature falls below 500mK (the
bottom two graphs of Fig. 1) reproducible fluctuations
appear in the drag resistivity.
The appearance of the fluctuations is better seen in

Fig. 2. In panel A the fluctuations in rD as a function of
concentration are seen to be reproducible, and increase in
magnitude with decreasing temperature. The inset shows
the non-monotonic behaviour of the drag resistivity for
two values of concentration, indicated by the dashed lines
in panel A. At high temperatures the drag resistivity shows
the usual monotonic T2 behaviour, but as the temperature
decreases the magnitude of the drag resistivity increases
with decreasing temperature and the drag becomes
increasingly negative or positive, dependent upon the
carrier concentration and B-field. The fluctuations are also
seen in the drag magnetoresistivity, shown in panel B of
Fig. 2. The temperature dependence of these fluctuations is
similar to that seen in panel A, and for a given T the
fluctuations of drag resistivity in concentration and
magnetic field are of similar magnitude.
In Ref. [9] the variance of Coulomb drag fluctuations is

calculated for the so-called diffusive regime, lod. In this
case the drag is determined by global properties of the
layers, averaged over a region Drbl. The expected variance
of drag fluctuations (at low T when the fluctuations exceed
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the average) in the diffusive regime for our experimental
conditions is �6� 10�11 mS2, which is approximately eight
orders of magnitude smaller than the variance of the
observed drag fluctuations. We have observed similar
fluctuations in rD in two different samples, confirming
the discrepancy with the theoretical prediction [9].

As the expected fluctuations of the drag conductivity
share the same origin as UCF in the conductivity, we have
compared the drag fluctuations with the fluctuations seen
in the single-layer resistivity of the same structure (Fig. 3).
We estimate the expected variance of the single-
layer conductivity fluctuations using the relation hDs2xxi ¼

ðe2=hÞ2ðLT=LÞ2, where LT ¼ ð_D=kBTÞ1=2 is the thermal
length and L is the size of the sample [12]. This expression
produces a value of 0:8mS2, which is in good agreement
with the measured value of 0:6mS2. The typical ‘period’ of
the drag fluctuations (the correlation field, DBc) is similar
to that of the UCF [13], indicating that both depend upon
the same Lj and have the same quantum origin.

To address the question of the discrepancy between the
magnitude of drag fluctuations in theory [9] and our
observations, we stress that the theoretical prediction for
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Fig. 3. (A) Comparison of single-layer resistivity fluctuations (bottom)

and drag resistivity fluctuations (top); T ¼ 240mK. The values of Dr are

found by subtracting the background single-layer resistance of 500O. (B)
Autocorrelation functions, F ðDBÞ, of graphs in (A). F ðDBÞ of drag

resistivity fluctuations (lower curve) is multiplied by 80.
the variance was obtained under the assumption of small
interlayer momentum transfers, q51=l. In all regimes the
momentum transfers are limited by qo1=d. In the diffusive
regime, lod, this relation also means that qo1=l, that is,
interlayer e–e interactions occur at distances Dr4l and
involve scattering by many impurities in the individual
layers. In the opposite situation, lbd, the transferred
momenta will include both small and large q-values: qo1=l

and 1=loqo1=d. As small q cannot explain the large
fluctuations of the drag [9], we suggest that it is large
momentum transfers with q41=l which give rise to the
observed effect. In this case the two electrons interact at a
distance Dr that is smaller than the average impurity
separation and, therefore, it is the local electron properties
of the layers which determine the fluctuations of the drag.
In Ref. [8] it is shown that the fluctuations of the local
properties are larger compared to those of the global
properties that are responsible for the drag in the diffusive
case of e–e interaction.
Using a Kubo formula analysis [14–17] a theoretical

expression for the drag conductivity is obtained (for an in
depth description see Ref. [7] and associated supporting
online material). In making a qualitative estimate three
factors have to be taken into account: (i) the inter-layer
matrix elements of the Coulomb interaction Dij ; (ii) the
phase space (the number of electron states available for
scattering); and (iii) the electron–hole (e–h) asymmetry in
both layers. The physical quantity that measures the degree
of e–h asymmetry is the non-linear susceptibility G of the
2D layer. The e–h asymmetry appears in G as a derivative
of the density of states n and the diffusion coefficient D:
G / qðnDÞ=qm, and it is this quantity that is responsible for
the fact that drag fluctuations can exceed the average. As
Dn�g, where g is the dimensionless conductivity, and the
typical energy of electrons is the Fermi energy, EF, we have
qðnDÞ=qm�g=EF for the average drag. The typical energy
scale for the interfering electrons, however, is ETðLjÞ [12],
which is much smaller than EF and therefore a mesoscopic
system has larger e–h asymmetry.
Under the condition of large momentum transfer

between the layers, fluctuations in G are similar to the
fluctuations of the LDoS, which can be estimated as
dn2�ðn2=gÞ lnðmaxðLj;LTÞ=lÞ [8]. Also, the interaction in
the ballistic regime can be assumed to be constant,
Dij � �1=nkd, as q is limited by qp1=d. Finally, fluctua-
tions of the drag are suppressed by Lj=L and LT=Lj due to
inelastic scattering over the distance Lj and thermal
smearing over ETðLjÞ, respectively. Combining the above
arguments we find

hDs2Di ¼ N
e4

g2_2ðkdÞ4
ðkBTÞ2

E2
TðLjÞ

l4L2
j

d4L2
, (1)

where N is a numerical coefficient.
Compared to the diffusive situation [9] the fluctuations

described by our model are greatly enhanced. Large
momentum transfers lead to the appearance of three extra



ARTICLE IN PRESS

1

0

Δσ
D
 (

μS
)

Δσ
D
 (

μS
)

2

1

0

0 5

B (mT)

10

0 5

B (mT)

10

σA

σP

Fig. 5. Top: drag magnetoconductivity fluctuations, DsDðBÞ, for different
values of active-layer conductivity, sA; sA ¼ 10; 5:6; 3:8; 2:2mS from top to

bottom, sP ¼ 2:4mS. Bottom: drag magnetoconductivity fluctuations for

different values of passive-layer conductivity, sP; sP ¼ 11; 6:4; 4:3; 2:4mS

from top to bottom, sA ¼ 2:2mS. T ¼ 240mK.

A.S. Price et al. / Physica E 40 (2008) 961–966964
factors in Eq. (1), each leading to an increase in the size of
fluctuations: (i) l4=d4, which is also present in the average
drag in the ballistic regime [14]; (ii) the phase space factor
T=ET; and (iii) the factor g2 due to fluctuations of the local
non-linear susceptibility. Physically, local fluctuations are
enhanced since the random quantity G is now averaged
over a small part of the ensemble, allowing one to detect
rare impurity configurations.

In addition to explaining the large magnitude of the
fluctuations, this model also predicts a non-trivial tem-
perature dependence of their magnitude. This comes from
the conventional change in the temperature dependence of
Lj [18]: at low temperatures, kBTt=_51, the usual result is
Lj / T�1=2, while for kBTt=_41 the temperature depen-
dence changes to Lj / T�1 [19]. Consequently, the
temperature dependence of the variance of the drag
fluctuations is expected to change from T�1 at low T, to
T�4 at high T. This temperature dependence is very
different from the T-dependence of drag fluctuations in the
diffusive regime, hDs2Di / T�1.

To test the prediction of Eq. (1), the T-dependence of
hDs2Di has been analysed, Fig. 4. The variance is calculated
in the limits of both Ttjo1 (solid line, t�1j / T) and
Ttj41 (dashed line, t�1j / T2), using N ’ 10�4. In fitting
the drag variance we have found tj to agree with theory to
within a factor of two [13], which is typical of the
agreement found in other experiments on determining tj
[20]. Thus, the temperature dependence of the observed
drag fluctuations strongly supports the validity of our
explanation.

In addition to the T-dependence of the drag fluctuations,
we have also observed a dependence of the magnitude of
the drag on the conductivity of each of the layers. Fig. 5
shows the fluctuations of the drag conductivity as the
B-field is varied, for different values of the active- and
passive-layer conductivities. These fluctuations are attained
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Fig. 4. The variance of the drag conductivity fluctuations (squares)

plotted against temperature. The solid and dashed lines are calculated

using Eq. (1) with the diffusive and ballistic asymptotes of tjðTÞ,
respectively. n ¼ 5:8� 1010 cm�2. (Figure adapted from Ref. [7].)
after subtracting an average background value of the drag
conductivity, which is small in comparison to the fluctua-
tions in sD. It can be seen that the magnitude of the
fluctuations increases with increasing conductivity of either
the active or passive layers. The increase of hDs2Di with
increasing sA; sP follows from Eq. (1) and the g depen-
dences of Lj / g, l / g3=4 and D / g. It is interesting to
note that the mesoscopic ‘fingerprint’ of the drag fluctua-
tions are affected by both sA and sP. This is a characteristic
feature of the drag fluctuations, which originate from the
interference pattern of both layers.

4. Strong B-field

Fig. 6 shows reproducible fluctuations of the drag
resistivity near filling factor n ¼ 1

2
. These fluctuations are

seen both by varying the concentration and magnetic field.
Note that the size of these fluctuations is greatly enhanced,
by three orders of magnitude, in comparison to those seen
at small B. (It is interesting to note that a similar increase
was observed in the average drag resistivity at n ¼ 1

2
[6].) In

Fig. 6 the fluctuations of the drag in both concentration
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and magnetic field are plotted as a function of n, and it is
immediately seen that their ‘periods’ are very close. This is
confirmed in the comparison of their autocorrelation
functions, Fig. 6, bottom panel. This similarity represents
one of the main properties of the fluctuations of the
composite fermions: Bc=nc ¼ 2F0, where Bc and nc are the
correlation magnetic field and correlation concentration,
respectively, and F0 is the quantum of magnetic flux. This
property of the fluctuations of the resistivity of the
composite fermions in single-layer systems was discussed
in Refs. [21,22]. The estimated value of Lj for composite
fermions found from the correlation fields in Fig. 6 is
�1mm at T ¼ 50mK.

It is tempting to compare the amplitude of the
fluctuations with the predictions for the magnitude of the
fluctuations of drag resistivity arising between CFs [23].
This theory has also been developed for the diffusive
regime of drag, dbl, and so one would expect that the
fluctuations of the drag would be larger in experiment,
similar to the small magnetic field case. To compare the
results with the theory one has to find the dimensionless
conductance of CFs, gcf ¼ e2=4hsxx, which is �5 in our
experiment. Using this value of gcf , we can estimate the
magnitude of the drag fluctuations according to Ref. [23],
which appears to be of the same order as that seen in
experiment. This, at first surprising, agreement with the
theory can be related to the fact that CFs have a smaller
mean free path than bare electrons, and thus are in the
diffusive regime for drag, l5d. In order to get the large
value of Lj, the CF, with a small gcf , should have a
relatively large coherence time. It will be interesting in the
next stage of experiments to investigate in more detail the
processes that control the dephasing of CFs, especially in
the situation of Coulomb drag.
To summarize, we have seen reproducible fluctuations of

the Coulomb drag conductivity with varying carrier
concentration and magnetic field. In weak fields their
magnitude is much larger than expected for the diffusive
regime of e–e interactions, l5d. We explain this by the
sensitivity of mesoscopic drag in the ballistic regime, lbd,
to local properties of the system. Contrary to UCF,
fluctuations of the drag are larger than the average, so that
drag resistivity randomly changes its sign. Another
difference from UCF is that the fluctuations of the drag
resistivity are controlled by the carrier concentration of
both layers. Finally, we have observed fluctuations of the
drag in strong magnetic fields around n ¼ 1

2
, where drag

occurs between interacting composite fermions. We have
observed a large enhancement of the drag fluctuations
relative to the weak field case, although its magnitude is
much closer to the predictions of the theory developed for
the diffusive regime.
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