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A charge carrier confined in a quasi-one-dimensional helical nanostructure in the
presence of an electric field normal to the axis of the helix is subjected to a periodic
potential proportional to the strength of the field and the helix radius. As a result,
the behavior of this carrier is similar to that in a semiconductor superlattice with
parameters controlled by the applied field. This behavior includes Bragg scattering
of the charge carrier by a periodic potential, which results in an energy gap opening
at the edge of the superlattice Brillouin zone. A certain type of carbon nanotube is
shown to possess similar superlattice properties. Modification of the band structure is
found to be significant for experimentally attainable electric fields, which raises the
possibility of applying this effect to novel nanoelectronic devices.

Keywords superlattice, helical nanostructure, carbon nanotube

Introduction

One of the main elements of modern nanoelectronics is the superlattice: an artificial
solid-state structure with potential variations that have a period of several tenths of the
interatomic separation (see, e.g., Ivchenko & Pikus, 1997). Bragg diffraction of electronic
waves on such a superperiod results in significant modification of the electronic energy
spectrum (in particular, the appearance of energy gaps). This allows the creation of nano-
electronic devices with specific characteristics. In existing technological processes these
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superlattices are based on multilayer semiconductor heterostructures. The parameters of
the periodic potential are therefore defined by the growth conditions and cannot be ma-
nipulated subsequently. Hence, it is highly desirable to develop a new kind of superlattice
in which the periodic potential parameters may be altered by an applied electric field.
This will provide an opportunity for creating a new class of nanoelectronic devices with
controlled properties. In this paper we present a theoretical analysis of a novel type of
superlattice with variable parameters, based on different helical nanostructures.

Semiconductor Nanohelices in a Transverse Electric Field

It has recently become possible to fabricate semiconductor nanohelices based on InGaAs/
GaAs (Prinz et al., 2000) and Si/SiGe (Prinz et al., 2001). Let us consider such a nanohelix
as a one-dimensional conductor with total length L, in the shape of a helix with radius R
and pitch P, in an external electric field of magnitude E normal to the axis of the helix.
The potential energy of an electron in such a helix is given by

U(s) = eERcos(2ns/ly), (D

where e is the electron charge, s is the electron coordinate along the one-dimensional
conductor, and /o = +/472R? + P2 is the length of a single coil of the helix. Evidently,
the potential energy (1) is periodic with respect to the electron coordinate s, with period
lo, which is significantly larger than the interatomic distance. As a result, the nanohelix
acquires typical superlattice properties. In the framework of the effective mass model, the
energy spectrum £g of an electron in a nanohelix in a transverse electric field is obtained
from the Schrodinger equation:
R d?

*Z—IZESEWE +U(S)YE = eeYE, (2)
where m is the effective mass of the electron. The solutions g of Eq. (2) are known to be
Mathieu functions (Gradshteyn & Ryzhik, 2000). However, despite the exact solutions
being known, it is impossible to write the energy spectrum &g in analytic form as a
function of the electron wavenumber k along the helical line. Since the dispersion &g (k)
determines the main electrophysical parameters of a superlattice, it is necessary to find it
explicitly. We will therefore use an approximate method of solving Eq. (2). Let us search
for a wavefunction ¥ as a superposition of plane waves (k) = /1 /L exp (iks), which
are the eigenfunctions of the electron in the absence of the external electric field:

Ve =) biyok). 3)
k ,
The matrix element of the potential energy (1) connecting unperturbed electron states
with wavenumbers k and &’ is then
(Yok)U$)Ipo(k)) = neER[S(L — k'L +gL) +8(kL —K'L —gL)],  (4)

where ¢ = 27/lp is the width of the first superlattice Brillouin zone. Substituting the
plane wave expansion (3) into the Schrédinger equation (2), and taking into account
Eq. (4), we obtain the system of linear algebraic equations

[e0 (k) — e (k)] b + Ug (brtg + br—g) =0, ®)
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where
2 k2
go(k) = —— (©)
2m
is the unperturbed energy of an electron in a nanohelix in the absence of an external
electric field, and Ug = ¢ ER/2 is the characteristic energy of interaction of the electron
with the electric field.
The matrix element (4) is nonzero only for electron states with wavenumbers differing
by g. Therefore, for weak enough electric fields, satisfying the condition Ug/ep(g) < 1,
when solving the system of equations (5) it is sufficient to take into account the admixture
of only the two states closest in energy, neglecting the contribution of all other states
separated by an energy exceeding Ug. In this approximation the system of equations (5),
which defines the electron energy spectrum &g (k), is reduced to just two equations, from
which the electron energy can be written in the extended Brillouin zone scheme as

1 1 '
Slz0k) + eo(lk] — 0] = 5/ [0 — eo(lkl = P +4UE, k| < 8/2
ee(k) =

) :
5[80(/6) + eo(lkl — )]+ 5\/[80(16) —eo(lkl — )12 +4U%, k| > g/2
Q)

The energy spectrum given by Eq. (7) is plotted in Figure 1. It follows from Eq. (7)
that the transverse electric field results in the opening of a gap in the nanohelix energy
spectrum at the boundary of the first Brillouin zone at £ = £g/2. The middle of this
gap lies at the energy £9(g/2) above the bottom of the unperturbed conduction band; the
size of the gap is linearly dependent on the field strength E and is equal to

Ae =2Ug = eER. 8)

It should be noted that the energy gaps at the boundaries of the other Brillouin zones depend
on higher powers of the electric field E, and contain a small parameter Ug/eo(g) < 1.
These gaps are neglected in the approximate expression (7).

Equations (7) and (8) clearly show that a nanohelix in a transverse electric field
represents a superlattice with the parameters controlled by the applied field.
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Figure 1. Electron energy spectrum of a nanohelix in the presence of a transverse electric field
E = 0.2¢¢(g)/(eR) (solid lines) and without the electric field (dashed line).
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Carbon Nanotubes as Superlattices

Carbon nanotubes (CNTs) are cylindrical molecules with nanometre diameter and mi-
crometre length. Since the discovery of CNTs just over a decade ago (lijima, 1991), their
unique electronic and structural properties have aroused great excitement in the scientific
community and promise a broad range of applications. Significant theoretical effort has
been applied to develop refined models of the electronic structure of carbon nanotubes, as
well as their optical and transport properties, although even a simple tight-binding model
(see Saito, Dresselhaus, & Dresselhaus, 1998) yielding analytic solutions is sufficient to
elucidate key nanotube features (e.g., whether a CNT of given structure will exhibit metal-
lic or semiconducting properties). In what follows we apply such a model to a particular
type of single-wall CNT, a so-called (n, 1) nanotube. We show that for such a CNT the
electron motion corresponds to a de Broglie wave propagating along a helical line. The
theoretical treatment of this type of CNT in an electric field perpendicular to the nanotube
axis (transverse electric field) can be reduced to a one-dimensional superlattice problem
(Kibis, Parfitt, & Portnoi, 2005). Such superlattice behavior of current-carrying electrons
suggests the application of CNTs to the development of novel carbon nanotube-based
devices.

A single-wall carbon nanotube may be considered as a single graphite sheet rolled
into a cylinder. The electronic energy spectrum of the CNT is therefore intimately related
to the energy spectrum &g2p(K) of a two-dimensional (2D) graphite sheet, which can be
written in the tight-binding approximation as (Saito, Dresselhaus, & Dresselhaus, 1998)

€ (ikxa) + 2ex ( ikxa)cos (kya>
<p | —— _ =z e nd
P\ P\"23 2

where ky and k, are the electron wave vector components in the graphite sheet plane
along the x and y axes, respectively (see Figure 2). In the energy spectrum (9), the plus
and minus signs correspond to the conduction and valence bands, respectively; yo ~ 3 eV
is the transfer integral between m-orbitals of neighboring carbon atoms, and the lattice
constant a = |aj| = |az| = V3 x ac-c = 2.46 A, where a; and a; are the 2D basis
vectors and ac.c = 1.42 A is the interatomic distance in graphite. The way in which
the 2D graphite sheet is rolled up to form the CNT can be described by two vectors:
the translation vector T and the chiral vector Cp, (see Figure 2). The chiral vector Cy
can be expressed in terms of the 2D basis vectors of the unrolled graphite sheet as
C;, = na, + may, where the pair of integers (n, m) is used as a standard notation (Saito,
Dresselhaus, & Dresselhaus, 1998) for a CNT of given crystal structure. To obtain the
electronic energy spectrum of the (n, m) CNT, we begin by expressing the wave vector
k in terms of components along T and Cy as k = kyT/T + k. Cy/Cp, where kj and
k. are subject to the following constraints: —n/T < ky < n/T and k1 = 27l/Cy
(1=0,1,2,..., N —1). The integer ! represents the electron angular momentum along
the nanotube axis and

, ®

ggap(kK) =ty

2 2 2
N = (n“+m* +nm)

n (10)

3

is the number of elementary atomic cells consisting of two carbon atoms (A, B) per area
|Cy x T|. The number dg appearing in Eq. (10) is the greatest common divisor of the
two integers (2n + m, 2m + n). The lengths of the chiral vector and translation vector

are given by Cj = av/n? + m? + nm and T = +/3Cy,/dg, respectively.
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Figure 2. The unrolled graphite sheet. By connecting the head and tail of the chiral vector Cp we
can construct, for example, a (4, 1) carbon nanotube. The dashed lines will then form a helical

line on the nanotube wall.

The energy spectrum of an (n, m) CNT can be obtained by expressing kx and ky in
terms of kj and k|, and substituting them in Eq. (9), thus yielding '

e=3%w , 11

i~/ 3 k
exp [D./_z_a (ky cos6 — k. sin 9)] + 2cos (-i;)

where we have introduced the new parameter ks = k1 cos6 + kjsin6, and the chiral
angle 6 (18] < 7/6) shown in Figure 2. Taking into account that

2 3
cosh = ntm sin6 = V/3m (12)

2SnZ+m:+nm 2Vn2 +m? +nm

we have, for m # 0, the equation

V3(ky cosf — ky sin@)a = [(2n + m)ksa — 2k Cp)/m. (13)

Substituting Egs. (12) and (13) into Eq. (11) we obtain

2 ki1 C k
exp | i n+mk5a— Lok + 2cos =4 , (14)
2m m 2

which, together with the constraint k| = 27l/Cy, yields an electron energy spectrum of
the form

k 2 2ml kea\ 1/
e==xy |1+ 4cos Bsd cos nt mk;a - + 4 cos? 54 . (15)
2 2m m 2

£=ﬂ:y0
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For m = 1, Eq. (15) becomes independent of I, and we obtain the electron energy

spectrum of a (n, 1) CNT in the form
1 k ksa\ 7'/
ksa) cos (n ;a) cos (_;_‘f):l , (16)

where j = 1, 2 correspond to the valence and conduction bands, respectively. It should
be noted that the spectrum (16) depends on the parameter k; alone, in contrast to the
general case of an (n, m) CNT, for which-the electron energy spectrum depends on two
parameters (k; and k; are conventionally used). This peculiarity of an (n, 1) CNT is a
consequence of its special crystal symmetry: the (n, 1) CNT lattice can be obtained by
translation of an elementary two-atom cell along a helical line on the nanotube wall (see
Figure 2). As a result, the parameter k,; has the meaning of an electron wave vector along
the helical line, and so any possible electron motion in an (n, 1) CNT can be described by
a de Broglie wave propagating along such a line. Both descriptions of the energy spectrum
of an (n, 1) CNT—by two parameters, k; and k| , or a single parameter k;—are physically
equivalent. However, the second description is more convenient for studies of electron
processes determined by the above-mentioned helical symmetry of electron motion and
allows one to discover new physical effects (e.g., the electron-electron interaction should
be strongly modified for helical one-dimensional motion (Kibis, 1992)). We shall now
show that such helical symmetry results in superlattice behavior of an (n, 1) CNT in the
presence of an electric field oriented perpendicular to the nanotube axis (a transverse
electric field). '

The potential energy of an electron on a helix subject to a transverse electric field
is given by Eq. (1). In the case of a (n, 1) CNT, the parameter R appearing in Eq. (1)
corresponds to the radius of the nanotube, R = Cj/2x. The electron coordinate along
the above-mentioned helical line is s, the length of a single coil of the helix I is given by

gjks) = (1) yo [1 + 8cos (" +

] 2rR  2a(n®*+n+1)
0= _

= = 17
cosf 2n+1 (an

’

and the electric potential is assumed to be zero at the axis of the CNT. Since the period
(17) of the electron potential energy is proportional to the CNT radius R and is greater
than the interatomic distance ac-c, the CNT assumes typical superlattice properties. It
should be noted that an approach based on a superlattice analogy between different
nanostructures has proven very productive in the theoretical treatment of low-dimensional
systems. In particular, a similar approach was used by Yevtushenko et al. (1997), and
Slepyan et al. (1998), in relation to nonlinear electronic transport in carbon nanotubes
subjected to rapidly oscillating electric fields. Using the superlattice analogy for the case
of an (n,1) CNT in a transverse electric field, one can predict that Bragg reflection
of electron waves with wave vectors ks = £ /[y results in energy splitting within the
conduction and valence bands of the CNT. We shall now study this effect in more detail.

In the framework of the tight-binding model (see Saito, Dresselhaus, & Dresselhaus,
1998) considering only three nearest neighbors to each atom, the wave functions for
electron states with corresponding energies (16) can be written as

Vi (ky) = [ (O (—Dfﬂ@w,@] exp(ikota), (18)

1
2 Z k)]
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where M is the total number of two-atom cells in the CNT, 1//,(’4) and w,(B) are m-orbital
wave functions for the two carbon atoms A and B, respectively; ¢ is the number along
the helical line for an elementary cell consisting of these two atoms (see Figure 2);
and h(ks) = 1 + exp(—iksa) + exp(inksa). The value of the potential energy U in the
external electric field at the position of a particular atom of the CNT depends on the
angle between the electric field vector and the vector normal to the nanotube axis which
passes through this atom. As a consequence, the coordinate of atom A in cell number ¢
along the helical line is

I
s =at + 2o (19)
‘ 2

The angle ¢ is defined such that R cos [d) +a(n+ 1)/(n2 +n+ 1)] is the coordinate in
the direction of the electric field (with zero at the CNT axis) of atom B in the cell with
t = 0. Using Eqgs. (18) and (19), we can write the matrix element of the potential energy

(1) as

Wi k)N U ¥ j (ks)) = Vi;!-‘scos(ksa—kga-i—bm/lo),l + Vi 8cosksa—kia—27a/lp),1 » (20)
where
+ ¢€ER h(kg)h* (ks) . m(n+1) .
x = 1 28;; — 1)———— +i—— + 21
i =g [ 0% = Dl entn) P\ a1 )| &) @D

and dyp 1s the Kronecker delta. In the derivation of Egs. (20) and (21) we have also
assumed that the external electric field E is much less than the atomic field, i.e.,

E< . 22)
ea

This allows us to neglect any change in the atomic wave functions w,(A) and w,(B)

due to the field F, and we take into account only the mixing of states (18) by the
field. According to Eq. (20), the field mixes only electron states (18) with wave vectors
differing by 27 /ly. In this approximation, the exact wave function in the presence of the
electric field, ¥ g(ks), can be expressed as a superposition of wave functions (18) with
ks shifted by integer numbers of 27/ lp:

2 pu—l

VEks) =) Y bjyj (ks +2mv/lo). (23)

j=1v=0

To ensure that in Eq. (23) we sum only over different electron states, the parameter u
should be the smallest integer defined by the condition v (ky) = v (ks + 27w/ lp). This
condition, together with the 27 /a periodicity of ¥ ;(ks), implies that /Iy = f/a, where
B is the smallest integer for which this equality is satisfied. Using Eq. (17) together
with Eq. (10) one can obtain 8 = (2n + 1)/dg, which yields 4 = N. This result has
a transparent physical interpretation, since the two closest carbon atoms equivalent with
respect to a translation parallel to the nanotube axis are separated by a distance Na along
a helical line.
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Substituting the wave function (23) into the Schrodinger equation with the potential
energy (1) we obtain a system of equations for the coefficients b;, entering Eq. (23):

[e) (ks + 270/ 1o) — £ (k)] bju

2 N-1 (24)
+ )Y (ks + 270/ 10) U1 (ks + 2V /o)) biry = 0,
i=1v=0
where v = 0,1,2,..., N — 1, the index j takes the value 1 or 2 for the valence and

conduction bands, respectively, and eg (k) is the electron energy in the presence of the
transverse electric field.

Let us consider the states ks = —m/lp and 7 /lp in the same CNT energy band,
which are at the boundaries of a Brillouin zone created by the periodic “superlattice”
potential (1) of the external field. One should expect the appearence of energy gaps
at these values of k; due to Bragg reflection of electron waves from the superlattice
potential. These states are separated by 27 /Iy and have the same energy, which means
that they are strongly mixed by the electric field. For these values of k; it can be shown
that the contributions to the sum in Eq. (23) from all other states can be neglected for
sufficiently weak fields, E <« ypa/(eR?). As a result, the system of equations (24) is
reduced to just two equations, from which the energy of Bragg band splitting A¢ is found
to be

Ae =2 [(Yj(=7/ 1)Uy (m/1o))| ~ eER. (25)

Thus, even a small electric field results in a superlattice-like change of the electron
energy spectrum in (n, 1) CNTs, with the appearance of Bragg energy gaps proportional
to the field amplitude E and the nanotube radius R. Notably, this dependence of the
Bragg gaps on the external field and radius applies to any helical quasi-one-dimensional
nanostructure in a transverse electric field: this generic feature arises from the symmetry
of the nanostructure, and is independent of the parameters of the tight-binding model
used to derive Eq. (25). Indeed, this result coincides exactly with the Bragg energy gap
(8) for nanohelices considered in the previous section.

It should be emphasized that the discussed superlattice behavior is a unique feature of
(n, 1) CNTs. For the general case of a (n, m) CNT with m £ 1, the energy spectrum (15)
depends on the quantum number / in addition to ks;. As already mentioned, ! represents
the projection of the electron angular momentum on the nanotube axis, and it follows
from the corresponding selection rule that the transverse electric field only mixes electron
states with angular momentum [/ and /%1. For m # 1, however, states with [ differing by 1
correspond to different subbands, and in general have different energies for k; = £/,
so that there is no Bragg scattering between these states. The only effect of the electric
field, therefore, is to mix electron states with different energies, which does not lead to
noticeable modification of the dispersion curves for weak electric fields (Li, Rotkin, &
Ravaioli, 2003).

For the particular case of a (1,1) CNT the energy spectrum can be obtained in
analytic form for any electron state, since the system of equations (24) consists of four
equations only. This system results in a biquadratic equation for the eigenvalues ¢ (k;):

5 (ks) — &% (ks)(W? + w3 + 201 + 2v2) + (v2 — v1 + wiw2)? =0, (26)
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where w; = y[1 4+ 2 cos(ksa)l, wa = yoll —2cos(ksa)], v1 = [V cos(¢ +7T/3)]2, vy =
[«/§V sin(¢+7r/3)]2, and V = «/§eEa/(4Jr). The energy spectrum &g (kg ) obtained from
Eq. (26) is shown in Figure 3 (solid lines) for a range of wave vectors —n/a < k; < 7/a.
In the figure, positive energies correspond to the conduction band and negative energies to
the valence band. The energy spectrum in the absence of the field is shown for comparison
(dashed lines). According to Eq. (17), the superlattice period [y for a (1, 1) CNT is equal
to twice the lattice constant a. Therefore, as can be seen in Figure 3, the width of the
first Brillouin zone in the presence of a transverse electric field is half that without the
field. It can also be seen that the electric field opens gaps in the dispersion curve at
ks = +m/(2a) due to the aforementioned Bragg reflection of electron waves. For electric
fields satisfying condition (22), we obtain from Eq. (26) the Bragg gap

Ae =

J3eEa
2

| cos(¢ + m/3)]. 27
T .

The result in Eq. (27) can also be obtained from the more general formula (25). It
should be noted that the Bragg gap, as well as the whole energy spectrum of the CNT
in a transverse electric field, depends on the orientation of the CNT relative to the field
(i.e., on the angle of rotation ¢). In particular, when ¢ = 7 /6 the Bragg gap (27) is
zero: for this angle the values of the electric field potential at atoms A and B ina (1, 1)

-3 4

l(sa/n

Figure 3. Electron energy spectrum of a (1, 1) CNT in the presence of a transverse electric field
E = yy/(eac-c) with ¢ = 0 (solid lines) and without the electric field (dashed lines). The inner
pair of vertical dotted lines indicates the first Brillouin zone boundary in the presence of the field,
whereas the outer pair corresponds to the first Brillouin zone boundary without the field. Ae is the
Bragg gap opened by the electric field.
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CNT are equal in magnitude but opposite in sign, and so the mean value of the potential
within one elementary cell of the CNT is zero.

Figure 4 shows the results of the numerical energy spectra calculations for a (4, 1)
CNT in a transverse electric field. Due to the superlattice effect discussed previously, the
boundaries of the first Brillouin zone are now at k; = =+ /(14a). One can see that even
a small perturbation (V = eER/4 = 0.1yp) results in a significant modification of the
electron spectra.

In the general case of an (n, 1) nanotube, for external electric field intensities at-
tainable in experiment (E ~ 10° V/cm) and for a typical nanotube of radius R ~ 10 A,
the value of the Bragg gap given by (25) is Ae ~ 102 eV, which is comparable to the
characteristic energy of band splitting in conventional semiconductor superlattices. As a
consequence, the discussed superlattice effects generated by the transverse electric field
in (n, 1) CNTs should be observable in experiments and may take place in existing CNT
field-effect devices (Appenzeller et al., 2002). The inherent regularity of a nanotube-
based superlattice, with the superlattice period determined by the CNT radius, presents a
distinct advantage over semiconductor superlattices, in which monolayer fluctuations are
unavoidable. A whole range of new nanoelectronic devices based on the discussed super-
lattice properties of (n, 1) CNTs can be envisaged, including Bloch oscillators (Esaki &
Tsu, 1970) and quantum cascade lasers (Faist et al., 1994). An evaluation of the feasi-
bility of these novel devices and selection of their optimal parameters will undoubtedly
form the subject of extensive future research.

14k a/m
5

Figure 4. Electron energy spectrum (positive energies only) of a (4, 1) carbon nanotube in the
presence of a transverse electric field E = 0.4yy/(eR) (circles) and in the vanishing field (solid
lines). Note that e(—k;) = e(ks), and that the negative energy values can be obtained by the mirror
reflection of the graph in the horizontal (¢ = 0) axis.
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Conclusions

In this paper we have discussed a previously overlooked class of CNTs, which may be
termed “helical” nanotubes. While we have concentrated on the superlattice behavior of
such nanotubes in a transverse electric field, we also expect their unique symmetry to
manifest itself in modification of the electron—electron, electron—phonon, and electron—
photon interactions. In addition, we have shown that superlattice behavior in a transverse
electric field is a generic feature of helical quasi-one-dimensional nanostructures, which
raises new possibilities for developing optoelectronic devices operating in the terahertz

range of frequencies.
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