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Abstract. We present a study of the elastic exciton-electron (X–e−) and exciton-hole (X–h) scattering
processes in semiconductor quantum wells, including fermion exchange effects. The balance between the
exciton and the free carrier populations within the electron-hole plasma is discussed in terms of ionization
degree in the nondegenerate regime. Assuming a two-dimensional Coulomb potential statically screened
by the free carrier gas, we apply the variable phase method to obtain the excitonic wavefunctions, which
we use to calculate the 1s exciton-free carrier matrix elements that describe the scattering of excitons
into the light cone where they can radiatively recombine. The photon emission rates due to the carrier-
assisted exciton recombination in semiconductor quantum-wells (QWs) at room temperature and in a low
density regime are obtained from Fermi’s golden rule, and studied for mid-gap and wide-gap materials. The
quantitative comparison of the direct and exchange terms of the scattering matrix elements shows that
fermion exchange is the dominant mechanism of the exciton-carrier scattering process. This is confirmed
by our analysis of the rates of photon emission induced by electron-assisted and hole-assisted exciton
recombinations.

PACS. 71.35.-y Excitons and related phenomena – 78.55.-m Photoluminescence, properties and materials
– 78.55.Cr III-V semiconductors – 78.55.Et II-VI semiconductors – 78.67.De Quantum wells

1 Introduction

Scattering processes involving excitons are at the heart
of a wide range of phenomena in semiconductor optics.
Excitons are often treated as elementary bosons, but the
complexity of the scattering problem obviously lies in their
composite nature: excitons are Coulomb-correlated quasi-
particles made of two fermions, a conduction band elec-
tron and a valence band hole. It is only recently that a
many-body theory of exciton scattering was put on firm
grounds in a series of papers by Combescot et al. (see e.g.
Refs. [1,2] and references therein). Their formalism, based
on fermion commutation techniques, allows one to calcu-
late correctly the scattering matrix elements as well as the
transition rates of two excitons. In the present paper, we
are only concerned with the simpler problem of exciton-
carrier scattering, i.e. a 3-body problem with well defined
interaction potentials between the three scattering part-
ners, including exchange effects explicitly. More precisely,
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we are interested in exciton-free carrier scattering in III–V
GaAs-based and II–VI ZnSe-based quantum-well systems.

Early investigations of the microscopic mechanisms
yielding low lasing thresholds and high optical gain in bulk
semiconductor lasers included detailed theoretical and ex-
perimental studies of radiative recombination involving
exciton scattering. Various scattering processes including
X−X , X−LO-phonon, X−e− scattering [3–5] and X–h
scattering [4,5] were studied and compared, and it was
reported that X−e− scattering is a process yielding im-
portant optical gain in bulk materials [3–5]. In particular,
Haug and co-workers gave a detailed study of the temper-
ature dependence of the lasing thresholds for each of the
scattering process [4,5]. Later, Feng and Spector studied
the exciton-free carrier elastic and inelastic scatterings in
quantum wells to compute the related cross sections and
exciton linewidths, but they did not account for carrier
exchange in their analysis [6]. Here, the aim of our work
is two-fold: first we want to compare the respective con-
tributions of the direct and the exchange terms to the
scattering matrix elements; then we want to study quan-
titatively the exchange term dependence on the carrier
effective mass and its impact on carrier-assisted exciton
radiative recombination in quantum wells.
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The interest for extensive studies of photolumines-
cence (PL) spectra [7–22] lies in the fact that they are
useful to study a rich variety of phenomena in semicon-
ductor physics and allow non-destructive characterization
of semiconductors. In the case of mixed exciton/electron-
hole plasmas, many processes occur that contribute to PL
spectra. These processes include: direct exciton recombi-
nation, electron-hole recombination and several scatter-
ing processes involving quasi-particles such as excitons,
phonons and excited carriers. The importance of each con-
tribution to PL depends on the thermodynamic properties
of the plasma and hence on the excitation conditions as
well as the type of material under consideration that de-
termine the populations and temperatures of each quasi-
particle gas. Moreover, the dimensionality of the system is
also of great importance since quantum confinement not
only enhances the effective strength of the Coulomb inter-
action between the carriers, but changes drastically the
density of states of the particles.

Early works by Kubo, Martin and Schwinger
(KMS) [23,24] suggest that in quasi-equilibrium the
intensity of PL is proportional to the absorption coefficient
times the Bose distribution describing the photon gas in-
teracting with the semiconductor medium. Detailed stud-
ies of the excitonic resonance features and their dynamics
through PL spectra based on the KMS approach led to the
interpretation of the build-up of the excitonic resonance
below the gap as direct evidence of excitonic formation on
the sub-nanosecond timescale, see e.g. references [9,14,16].
However, calculations by Kira et al. [17,18] clearly show
that there is no straightforward connection between exci-
ton formation and the presence of an excitonic peak in the
emission: free plasma emission can occur at the exciton en-
ergy. Galbraith et al. [19] reported later on the existence
of luminescence at the exciton energy in GaAs-based mul-
tiple quantum well, consistent with the theoretical work
of Kira et al. [17,18], and Chatterjee et al. [20] identified
conditions under which the PL emission at the exciton
resonance after excitation in the continuum is dominated
by the free electron-hole plasma or by an incoherent exci-
ton population at low temperature (but they could not
determine experimentally the fraction of excitons con-
tributing to PL). This contradicts the findings reported
by Szczytko et al. [21] who claimed that excitons provide
the dominant contribution to the luminescence signals at
the exciton energy, and concluded that for densities, tem-
peratures, and time scales actually used in time-resolved
experiments the Coulomb correlated plasma contribution
may be neglected. The conclusion on the role of a finite ex-
citon population based on the results obtained from simple
rate equations used by Szczytko et al. may require further
investigation to be confirmed, but models that take into
account the existence of a finite population of excitons in
excited QWs deserve nonetheless attention.

In our model, we assume that the exciton and car-
rier populations at room temperature in a low density
regime have reached thermodynamic equilibrium. During
the course of the scattering process, an exciton leaves its
initial state and reaches the photon line before radiative

recombination, transferring its momentum to its scatter-
ing partner, a free carrier. The exciton-electron scattering
was found to be an important mechanism producing pho-
toluminescence in bulk materials [3–5,15] and optical gain
in thin films [22]. It is thus of interest to investigate this
mechanism in mid-gap and wide-gap quantum wells, and
also obtain further insight by including the exciton-hole
scattering in the analysis. Therefore, the object of the
present work is not the calculation of the full PL spec-
tra for which a full microscopic theory [17,18,20] is re-
quired, but the quantitative study of the relative impor-
tance of X–e− and X–h scattering mechanisms, including
exchange. Direct exciton recombination, known to yield a
strong emission at exciton energy [10,11], as well as scat-
tering processes other than that of excitons with free car-
riers are beyond the scope of the present work and hence
are not included in the paper.

A complete treatment of the balance between bound
excitonic states, scattering states and free carriers is a
difficult problem that has attracted attention for sev-
eral years [25–31]. In the case of QWs, advances were
made in reference [30] where the degree of ionization,
α, of a non-degenerate two-dimensional (2D) electron-
hole plasma was calculated as the ratio n0/n of the
density of free carriers, n0, to the total plasma density,
n = n0 + ncorr where ncorr is the density of Coulomb
correlated carriers [26]. To account for occupation of scat-
tering states and overlap of exciton wavefunctions at mod-
erate and high densities this concept was further refined
in reference [31], so that the definition of α is given by
α = 1−nab/na, where na is the total density of carriers of
type a and nab originates from the interaction of carriers
of type a with carriers of type b (a �= b). The ionization de-
gree is now formulated in terms of elementary excitations
(electrons and holes). Note that in the low density limit,
nab can be identified to the exciton density. The degree of
ionization whose values are between 0 and 1, is both den-
sity and temperature dependent. Authors of reference [30]
demonstrated that for wide-gap semiconductor quantum-
wells at room temperature, the equilibrium consists of an
almost equal mixture of correlated electron-hole pairs and
uncorrelated free carriers whereas this is not the case for
mid-gap materials.

For a plasma temperature of 300 K, we ensure the
occupation density is small enough (nondegenerate limit)
to neglect phase-space filling effects. Under these condi-
tions, the scattering between excitons and carriers involves
mostly thermalized 1s excitons with a finite center of mass
momentum and free carriers. This assumption is valid at
room temperature and moderate densities where the 1s
exciton population dominates all other Coulomb correla-
tions in the electron-hole plasma. Calculations in an un-
screened Coulomb potential with hydrogen atom-like ex-
citon wavefunctions have been reported by Kavokin [32].
In the present work, the electron-hole bound states are
computed assuming a statically screened Coulomb poten-
tial (whose asymptotic behavior permits the application
of the variable phase method [33]).
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In Section 2 we detail the basic assumptions made
for the model of the interacting 2D electron-hole plasma
and define the ionization degree. Section 3 is devoted to
the derivation of the exciton wavefunctions from the vari-
able phase theory. In Section 4 we calculate the exciton-
free carrier scattering matrix elements that we include
into Fermi’s golden rule to compute the related emis-
sion rates. Numerical results are presented and discussed
in Section 5, where photon emission rates induced by
exciton-carrier scattering in ZnSe and GaAs QWs are
compared.

2 Ingredients of the model

2.1 Underlying assumptions

In this work we assume the quantum-well structures to
be ideal two-dimensional systems in a two-band model
with parabolic dispersion, neglecting detail related to
valence-band mixing. We consider a neutral low density,
2D plasma composed of interacting electrons and holes, at
room temperature. We thereby remain in the Boltzmann
regime defined by [34]:

nλ2
mc
/g � 1, (1)

where n is the 2D carrier density, λmc =
(2π�

2/mckBT )1/2 the thermal wavelength and g the
spin degeneracy of the confined carriers of effective
mass mc. For T = 300 K, equation (1) is satisfied
for n � 1.7 × 1012 cm2 for ZnSe-based QWs and
n� 7.2 × 1011 cm2 for GaAs-based QWs [30].

Due to spatial confinement of the carriers in QWs
the Coulombic interaction between electrons and holes
is enhanced. However, even at moderate plasma den-
sities carrier-carrier interactions are weakened because
of the density-dependent screening. Screening is one of
the most important manifestations of the complex many-
body interaction in the electron-hole plasma and the sim-
plest approach is the use of the 2D statically screened
potential [35]:

Vs(ρ) =
e2

ε

∫ ∞

0

qJ0(qρ)
q + qs

dq, (2)

where J0 is the Bessel function; qs, in the Boltzmann limit,
is known as the 2D Debye-Hückel screening wavenumber
(which depends on temperature and carrier density), ε is
the static dielectric constant of the semiconductor and
ρ the inter-carrier distance. Equation (2) describes the
electron-electron and hole-hole repulsion; the attractive
electron-hole potential is obtained by changing the overall
sign.

The above integral may also be written in terms of
special functions:

Vs(ρ) =
e2

ε

[
1
ρ
− π

2
(H0(qsρ) −N0(qsρ))

]
, (3)

where N0 and H0 are the Neumann and Struve functions
respectively [36,37].

The total screening is the sum of electron and hole
plasma screenings. As such we neglect the weak screening
by neutral excitons.

2.2 The degree of ionization

In QWs where Coulomb forces are enhanced because of the
spatial confinement of the electrons and holes, we expect
a finite population of Coulomb correlated quasi-particles
in the plasma even at room temperature. The balance be-
tween those correlations and the free carriers is obtained
by calculating the degree of ionization, α [31]:

α = 1 − neh

ne
= 1 − neh

nh
. (4)

In the above equation, the total density of a carrier of type
a is defined as [31]:

na = n0
a + naa + nab, (5)

where n0
a is the density of free carriers of type a and

naa originates from the interaction between carriers of the
same type (ee or hh). When α is close to unity, the thermo-
dynamic properties of the electron-hole plasma are those
of the ideal gas (defined by α = 1). For lower values of the
degree of ionization the thermodynamic properties of the
plasma deviate from those of the ideal gas and Coulomb
correlations have to be considered.

Detailed calculations of the degree of ionization and
further discussion on the statistical mechanics of the 2D
electron-hole plasma can be found in references [29–31].
Here we only stress that the degree of ionization is ob-
tained from the calculation of the partition function of the
2D electron-hole plasma. Scattering state contributions to
the partition function have to be considered in addition
to the bound-state sum as a proper account of scatter-
ing eliminates singularities in thermodynamic properties
of the non-ideal 2D gas caused by the emergence of addi-
tional bound states as the strength of the attractive po-
tential is increased. Inclusion of the scattering states also
leads to a strong deviation from the standard law of mass
action. Additionally, note that exchange between carriers
within the electron-hole plasma is taken into account in
the calculation of the electron-electron and hole-hole parts
of the partition function [30].

The ionization degrees, αGaAs and αZnSe, are shown
as functions of plasma density n on Figure 1 for GaAs
and ZnSe quantum-wells at temperature T = 300 K. In
the nondegenerate regime, the function αGaAs(n) is mono-
tonic whereas αZnSe(n) exhibits a minimum at low den-
sity. The presence of the minimum is due to the influence
of Coulomb screening on the density dependence of the
ionization degree: at very low density screening is negli-
gible and ncorr

a is proportional to the square of the total
plasma density so α is a decreasing function of n; how-
ever with n increasing further, plasma screening becomes
more and more important and hence reduces the strength
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Fig. 1. Ionization degree evaluated for GaAs and ZnSe quan-
tum wells in the Boltzmann regime for T = 300 K, as a function
of the 2D plasma density scaled to the square of the excitonic
Bohr radius, aB .

of Coulomb correlations so ncorr
a is a decreasing function

of n and α increases. This density dependence is more
dramatic in ZnSe QWs where Coulomb forces are much
stronger than they are in GaAs QWs. Note that αGaAs(n)
and αZnSe(n) not only differ qualitatively but also quan-
titatively: in GaAs QWs the electron-hole plasma is dom-
inated by free carriers whereas it contains comparable
densities of correlations and free carriers in ZnSe QWs.
Knowledge of the degree of ionization is of great impor-
tance as the emission mechanisms depend on the nature
of the plasma. For further detail see reference [30].

3 Two-dimensional exciton wavefunction

In this section we calculate the wavefunction of an
electron-hole bound state in the statically screened
potential, equation (2). We suppose that the interaction
between the two particles depends only on the relative
distance ρ = |re − rh|, and we split the problem into two
parts: the study of the relative motion of the two particles
and the study of the motion of the center of mass which
does not depend on the interaction. The total Hamiltonian
can then be written as: Ĥtot = Ĥcm + Ĥrel. To study
the relative motion problem we apply the variable phase
method of scattering theory, neglecting the intrinsic spin
effects.

The Schrödinger equation for the radial wavefunction
of the relative motion has the following form:[

d2

dρ2
+

1
ρ

d

dρ
+ κ2 − U(ρ) − m2

ρ2

]
Rm,κ(ρ) = 0, (6)

for a given value of m , the azimuthal quantum number
and where k2 = 2mrE/�

2,m−1
r = m−1

e +m−1
h , and U(ρ) =

2mrVs(ρ)/�2.
For the bound states, the energy E is negative and we

introduce the imaginary wavenumber k = iκ. As the po-
tential vanishes at large distances, the solution of the ra-
dial equation equation (17) can be approximated for large

ρ by the solution of the free Bessel equation, which is
a linear combination of the modified Bessel functions of
the first and second kind. Then, the solution of the radial
Schrödinger, equation (17), can be written as follows [30]:

Rm,κ(ρ) = Am

(
Im(κρ) cos ηm +

2
π
Km(κρ) sin ηm

)
,

(7)
where Im(κρ) and Km(κρ) are the modified Bessel func-
tions of the first and second kinds respectively while the
phase shift ηm characterises their admixture and Am is
the wavefunction amplitude.

To solve the problem for all ρ, not just ρ → ∞, the
phase shift ηm and the amplitude Am are both consid-
ered not as constants but as explicit functions of ρ and κ
in the 2D formulation of the variable phase method [33].
Following reference [30], we insert equation (7) into (6)
and find that the phase shift satisfies the following first
order, non-linear differential equation of the Ricatti type:

d

dρ
ηm,κ(ρ) = −π

2
ρ U(ρ)

×
(
Im(κρ) cos ηm,κ(ρ) +

2
π
Km(κρ) sin ηm,κ(ρ)

)2

. (8)

Equation (8) is called the phase equation and should be
solved with the boundary condition: ηm,κ(0) = 0, thus
ensuring that the radial function does not diverge at ρ = 0.
For the bound states the diverging solution vanishes, thus
implying the asymptotic condition:

lim
ρ→∞ ηm,κ(ρ) = (ν − 1/2)π, (9)

where ν enumerates the bound states for a given m. The
number of non-zero nodes of the radial wave function is
given by ν − 1.

Similarly the amplitude Am,κ(ρ) satisfies the following
equation:

d

dρ
Am,κ(ρ) =

Im(κρ) sin ηm,κ(ρ) − 2
π Km(κρ) cos ηm,κ(ρ)

Im(κρ) cos ηm,κ(ρ) + 2
π Km(κρ) sin ηm,κ(ρ)

×Am,κ(ρ)
d

dρ
ηm,κ(ρ), (10)

which is coupled to the phase equation, equation (8),
whose solution is computed first.

The total bound exciton wavefunction is hence given
by the product of the relative wavefunction

ψm,κ(ρ, ϕ) =
(
Im(κρ) cos ηm,κ(ρ) +

2
π
Km(κρ) sin ηm,κ(ρ)

)

×Am,κ(ρ)eimϕ, (11)

and the exciton center of mass motion wave-
function characterized by the plane wave
φkcm

(R) = exp(−ikcm · R)/
√A, where R = (mere+

mhrh)/(me + mh) is the exciton center of mass coordi-
nate, re and rh the carrier coordinates , A is the surface
area of the 2D system and kcm =

√
2MEcm/� the exciton

center of mass momentum. Calculation of the scattering
states is detailed in reference [30].
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4 Photon emission induced by exciton-carrier
scattering

4.1 The scattering matrix elements

In this section we are concerned with the scattering of
1s excitons with free carriers: the excitons transfer their
momenta and energies to the free carriers and reach the
photon line where they recombine and thus emit a photon.
Two possible spin configurations should be considered: de-
pending on its total spin state an exciton may or may not
radiatively recombine because of selection rules. In the
X–e− scattering process, the triplet state is defined with
parallel electron spins and the singlet state with antipar-
allel electron spins (the same obviously applies for hole
spins in the case of X–h scattering). If, for instance, the
exciton spin is +1, the exciton is said to be bright and if
it is +2, the exciton is dark. Therefore, exchange between
the free carrier and the bound carrier changes the nature
of the exciton in the singlet configuration, while the total
exciton spin is conserved in the triplet configuration.

The carriers interact via the screened potentials de-
fined in equation (2) and the matrix element V cX

scat, c ≡
e, h, can be written as a sum (difference) of a direct term
V cX

dir and an exchange term V cX
exch in the triplet (singlet)

configuration:

V cX
scat(kcm,k2) = V cX

dir (kcm) ± V cX
exch(kcm,k2). (12)

As shown in Appendix A, in the case of exciton-electron
scattering:

V eX
dir =

e2

2ε0εr

R̃2
0,κ(γhkcm) − R̃2

0,κ(γekcm)

kcm + qs
, (13)

and

V eX
exch =

e2

2ε0εr

(
R̃0,κ(k2 + γhkcm)

∫
R̃0,κ(−k2 − q)

q + qs
dq

+
∫
R̃0,κ(−k2 − q)R̃0,κ(k2 + γhkcm + q)

q + qs
dq

− R̃0,κ(k2)
∫
R̃0,κ(k2 + γhkcm − q)

q + qs
dq

)
, (14)

where γc = mc/M . Note that the minus sign before the
third term in the equation above may change the overall
sign of the exchange term when it is computed as a func-
tion of kcm. To obtain these two terms for the exciton-hole
scattering, one should simply swap the effective massesme

and mh where appropriate and change the overall sign.
In equations (13) and (14), the quantities R̃0 and R̃2

0
respectively denote the Fourier transforms of the m = 0
radial wavefunction in equation (11) and its square. Since
the free carriers wavefunctions are taken as plane waves,
the direct term V cX

dir , c = e, h, is independent of the scat-
tering free carrier momentum k2 and only depends on the
energy of the bound state characterized by the wavenum-
ber κ, the effective masses of the carriers me and mh,
and the initial exciton momentum kcm. We also find that
V hX

dir (kcm) = −V eX
dir (kcm).

4.2 Emission rates

In this section we give the expressions of the exciton–
carrier scattering contributions to the photon emis-
sion rates, ReX(�Ω) and RhX(�Ω). The expression for
ReX(�Ω), derived from Fermi’s golden rule, is taken from
reference [3]:

ReX(�Ω) =
∑
kcm

∑
k2

Ckcm,k2Nkcm
Nk2 , (15)

with

Ckcm,k2 =
2π
�

|Vscat|2
(

4πξ�Ω/Eg

(1 − �2Ω2/E2
g)2 + 4πξ

)
(16)

×δ
(
EX − �Ω − �

2

2me
(k2

cm + 2kcm · k2)
)
,

where Vscat(kcm, k2) are the exciton-carrier scattering ma-
trix elements given by equations (13) and (14), kcm the
exciton center of mass wavevector, and k2 the free electron
wavevector. The exciton and free carrier distributions,
Nkcm

and Nk2 , are:

Nkcm
=

2πβ�
2

M
(1 − α)n exp

(
−β �

2k2
cm

2M

)
, (17)

and

Nk2 =
2πβ�

2

me
αn exp

(
−β �

2k2
2

2me

)
. (18)

The coefficient ξ in equation (16) ensures that there is
no divergence when the photon energy �Ω is equal to the
gap energy Eg. The exciton binding energy is EX

b , so the
total energy of an exciton is: EX = Eg−EX

b +�
2k2

cm/2M ,
where M = Me +mh.

To proceed with the calculations we combine
equations (15–18), which yields:

ReX(�Ω) =
2π
�

4πξ�Ω/Eg

(1 − �2Ω2/E2
g)2 + 4πξ

(19)

×
∑
kcm

2πβ�
2

M
(1 − α)n exp

(
−β �

2k2
cm

2M

)

×
∑
k2

2πβ�
2

me
αn exp

(
−β �

2k2
2

2me

)

× |Vscat(kcm,k2)|2 δ
(
Eg − EX

b +
�

2k2
cm

2M

− �Ω − �
2

2me
(k2

cm + 2kcm · k2)
)
,

for the exciton-electron scattering. The function RhX(�Ω)
is formally identical to ReX(�Ω) in equation (19). The ef-
fective masses me and mh have only to be changed where
appropriate. The rates RcX(�Ω) depend explicitly on the
degree of ionization, α, via the product α(1 − α). This
product is maximum for α = 1/2, which means that
for given thermodynamic conditions on temperature and
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density, RcX(�Ω), as defined above, is greater when the
plasma is composed of a mixture of excitons and free car-
riers in equal proportions. As mentioned in Section 2.B,
the nature of the electron-hole plasma in ZnSe QWs is
closer to a plasma with α = 1/2 than it is in GaAs QWs,
and one should expect a more important contribution of
exciton-carrier scattering to PL in ZnSe QWs. Note that
very high proportion of excitons do not guarantee a great
contribution to RcX(�Ω) either, as it would simply mean
that there would not be enough free carriers to scatter
with. The key point here is to have α close to 1/2.

For numerical purposes, the discrete sums are approx-
imated by 2D integrals:

∑
k −→ A/4π2

∫
dk. To evalu-

ate the effects of exchange on the emission rates induced
by exciton-carrier scattering, we first calculate RcX(�Ω),
considering only the direct term of the scattering matrix
elements. Note that, as shown in Appendix B, the numeri-
cal calculation of RcX(�Ω) is greatly simplified in this case
since V cX

dir does not depend on k2 (see Eq. (52)). Inclu-
sion of the exchange terms in the calculation of RcX(�Ω)
requires the full numerical computation of equation (19).

5 Numerical results

The materials parameters for GaAs-based quantum-wells
are: me = 0.067m0, mh = 0.46m0, where m0 is the free
electron mass, εr = 12, Eg = 1.45 eV. For ZnSe we use:
me = 0.15m0, mh = 0.60m0, εr = 8.8, Eg = 2.7 eV. As
in reference [3] we take ξ ≈ 10−3. The ionization degree
is evaluated at T = 300 K for various plasma densities
given in Table 1. To study V cX

scat as a function of the ex-
citon center of mass wavevector, kcm, we fix the modulus
of the free carriers wavevectors, k2, evaluated from the
mean velocity of the free carriers within the 300 K carrier
gases. In GaAs QW, k2 = 2.32 a−1

B and k2 = 6.07 a−1
B for

the electron and the hole respectively. In ZnSe QW, these
values are k2 = 1.24 a−1

B and k2 = 2.48 a−1
B .

5.1 The scattering matrix elements

To calculate the direct and exchange terms of the scat-
tering matrix elements, equations (13) and (14), we need
to compute first the relative motion part of the exciton
wavefunction in the screened Coulomb potential from the
numerical solution of equations (8) and (10) obtained with
the variable phase approach. In Figure 2 the behavior of
the direct terms of the scattering matrix elements ver-
sus kcm is shown for two values of the plasma screening:
qsaB = 0.1 and qsaB = 1, for both materials. In all cases
the qualitative behavior of V eX

dir is the same: V eX
dir = 0 for

kcm = 0 since the exciton cannot scatter from kcm = 0
to kcm = 0; then, for small wavenumbers, V eX

dir which is
negative for all values of kcm, decreases and reaches a min-
imum for kcm ≈ 3a−1

B , which means that the location of
the minimum mostly depends on the ratio of the electron
and hole effective masses, and less on the screening param-
eter in the low density regime. For exciton center of mass

Table 1. Values of plasma screening parameter qs scaled to
the excitonic Bohr radius, and the corresponding densities n
in 1011 cm−2 and degrees of ionization α, for ZnSe and GaAs
QWs at T = 300 K. The exciton binding energies, EX

b , are
given in excitonic Rydbergs.

GaAs ZnSe

qsaB n α(n) n α(n) EX
b

0.10 0.14 0.93 0.66 0.41 3.30

0.32 0.48 0.86 2.51 0.34 2.51

1.0 1.62 0.78 6.78 0.39 1.35
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Fig. 2. Direct terms of the scattering matrix elements as func-
tions of kcm, describing the 1s exciton-carrier direct scattering
within a screened Coulomb potential in ZnSe and GaAs quan-
tum wells, in a low density regime at T = 300 K. For a given
plasma screening V hX

dir is the exact opposite of V eX
dir .

momenta larger than 3 a−1
B , V dir,e

scat is a monotonically in-
creasing function of kcm whose amplitude thus diminishes:
the transfer of increasing large exciton center of mass mo-
mentum to its scattering partner is less likely. The matrix
element V eX

dir is, as expected, greater for low screening,
but not in a dramatic way: in the low density regime the
screening parameter remains small enough not to have a
significant impact on the amplitude of V eX

dir . The magni-
tude of V eX

dir is also higher in ZnSe than it is in GaAs,
reflecting the greater strength of Coulomb interaction in
ZnSe. Note that if the electron and hole effective masses
were equal, the electron-electron and electron-hole contri-
butions to V eX

dir would cancel exactly and the scattering
amplitude would be zero for all kcm. For a given plasma
screening, the same comments apply to V hX

dir , except that
because of opposite signs, it is positive for all kcm. The
functions V hX

dir and V eX
dir reach their extrema for the same

values of kcm. Note that the extrema of V cX
dir , c ≡ e, h, in

both ZnSe-based and GaAs-based QWs, are reached for
values of kcm that are very close: here the material de-
pendent effective masses have a limited influence on the
behavior of the function V cX

dir (kcm).
We turn now to the study of the full scattering matrix

elements,V cX
scat, including the exchange terms. For discus-

sion, the value of k2 is taken as the thermally averaged
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Fig. 3. Comparison of the direct and exchange terms of the
X–e− scattering matrix elements as functions of kcm in ZnSe
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0 10 20 30
 kcm(aB

-1
)

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

S
ca

tte
rin

g 
m

at
rix

 e
le

m
en

ts
 (

eV
)

0 10 20 30
-0.1

0

0.1

0.2
qsaB = 1.0
qsaB = 0.1

GaAs QWZnSe QW

X - h

X - e
 _

X - h

X - e
 _

Fig. 4. Scattering matrix elements (approximated by the ex-
change terms) as functions of kcm, describing the 1s exciton-
carrier scattering within a screened Coulomb potential in ZnSe
and GaAs quantum wells, in a low density regime at T = 300 K.

wavevector as introduced at the beginning of this section.
A comparison of amplitudes of V eX

dir and V eX
exch is depicted

in Figure 3. For a given value of k2, V eX
exch is much greater

than V eX
dir . Exchange effects are therefore of importance

even if the plasma is at room temperature. Another in-
teresting observation is that unlike the direct term, the
exchange term changes sign, thus reflecting the complex
interplay of the Coulomb interactions between the three
scattering partners. These results are consistent with the
findings of Ramon et al. [38] in the case of electron-exciton
scattering. Note that the calculations of Ramon et al. [38]
were performed in the low temperature regime thus re-
sulting in a greater amplitude of the exchange term at
kcm ≈ 0.

The total scattering matrix elements can thus be safely
approximated by the exchange terms as shown in Figure 4.
For a given plasma screening, we find that the scattering
matrix elements, V eX

scat and V hX
scat, are not the exact oppo-

site of each other, unlike the direct terms. This originates
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Fig. 5. Contribution of the direct 1s exciton-carrier scattering
to the emission rates evaluated for ZnSe and GaAs QWs in
the nondegenerate regime at T = 300 K. The corresponding
values of the densities for the screening parameters are given
in Table 1. The rates of photon emission induced by the direct
exciton-hole scattering dominate those induced by the direct
exciton-electron scattering in both materials, by one order of
magnitude. Note the differing vertical scales.

from the non-trivial dependence of V cX
exch on the free carri-

ers wavevectors k2 and the effective masses as can be seen
in equation (14). For small and moderate exciton trans-
ferred momenta kcm, the amplitudes of the scattering ma-
trix elements V hX

scat are smaller than those of V eX
scat simply

because the exchange effects are less important with larger
effective mass. However, as the value of kcm increases the
amplitudes become comparable and we observe that they
decrease in a slower fashion for V hX

scat than for V eX
scat. Be-

cause of their smaller effective mass, the electrons acquire
a larger kinetic energy for a given value of the transferred
momentum than the holes, which as a consequence dimin-
ishes the exchange effects for the lighter quasiparticles.
The interplay between effective mass and transferred mo-
mentum thus has a non-trivial influence on the exchange
term of the scattering matrix elements.

5.2 Contribution of exciton-carrier scattering
to the emission rates

The numerical evaluation of equation (52) gives the 1s
exciton-carrier direct scattering contributions to the emis-
sion rates, shown in Figure 5. For a given material the
behavior of RcX(�Ω) reflects its complex density depen-
dence via the factor α(n)(1 − α(n))n2. Note that since
the scattering matrix element does not depend dramati-
cally on n it has a rather small influence on the emission
rates: RcX(�Ω) is proportional to the square of V cX

dir and
while the amplitudes of V cX

dir decrease as the plasma den-
sity increases, the function RcX(�Ω) is increasing signif-
icantly. It is also of interest to note that the magnitude
of RhX(�Ω), induced by the direct term of the scattering
matrix elements, is greater than ReX(�Ω) for comparable
densities. This can be explained as follows: first, since the
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Fig. 6. Contribution of the 1s exciton-carrier scattering to the
emission rates evaluated for ZnSe and GaAs QWs in the non-
degenerate regime at T = 300 K. The corresponding values
of the densities for the screening parameters are given in Ta-
ble 1. Exchange has reversed the previously observed trend: it
is now exciton-electron scattering that yields the highest pho-
ton emission rates in both materials. Note the differing vertical
scales.

direct terms of the scattering matrix elements V hX
dir and

V eX
dir have exactly the same magnitudes for a given car-

rier density, the X–e− direct scattering channel is not fa-
vored despite the electron lighter effective mass; however,
as can be seen from equation (52),RcX(�Ω) increases with
increased carrier effective mass mc (which can be found
in the prefactor before the integral). Second, we checked
that the function of photon energy, �Ω, resulting from the
computation of the integral in equation (52) (without the
prefactors) is greater in the case of X–h direct scattering
near its maximum. This mass effect can be interpreted in
terms of the two-dimensional density of states that is in-
deed greater for the hole gas than it is for the electron
gas. Note that the emission spectra exhibit a thermal tail
on the low energy side of the spectrum mirroring the free
carriers distribution functions.

To calculate the emission rates, including exchange ef-
fects in the scattering process, from equation (19), we
should, in principle, take the carrier spins into account
and hence study both the singlet and triplet configura-
tions. However, as clearly shown in Figure 4, the direct
term is negligible compared to the exchange term. There-
fore, the total scattering matrix elements can be very well
approximated by the exchange term only in equation (12),
and the spin configuration becomes irrelevant here, as ob-
served by Ramon et al. [38]. In Figure 6, we find that
the inclusion of exchange effects in our model reverses the
trend that we observed above: the magnitude of ReX(�Ω)
has increased dramatically and is now greater than that
of RhX(�Ω). Exchange is therefore the mechanism that
makes the X–e− scattering a more efficient process than
X–h scattering to lead an exciton to the radiative cone

where photon emission occurs. Although of importance,
exchange effects are indeed reduced for the holes, which
are heavier (4 times and 7 times the electron effective mass
in ZnSe and GaAs respectively). Comparing results ob-
tained for ZnSe and GaAs, it appears clearly that, for a
given plasma screening, the contribution of exciton-carrier
scattering to the emission rates at room temperature is
more important in ZnSe than it is in GaAs, whatever the
scattering channel is, X–e− or X–h. This is first due to
the fact that for a given plasma screening, the plasma
density is higher in ZnSe QW than it is in GaAs QW; sec-
ond, because of a smaller dielectric constant that yields
a strong exciton binding energy in ZnSe QWs, the ex-
citon population remain important at low and moderate
carrier densities (more than 50 %) whereas the fraction
of excitons in GaAs QWs remains modest (less than 20
%) and hence yield a lower carrier-assisted excitonic con-
tribution to photon emission. The nature of the mixed
exciton/electron-hole plasma is therefore of importance.

6 Summary and conclusion

We have computed the exciton-electron and exciton-hole
scattering matrix elements and discussed their properties.
We have considered the fermionic nature of the carriers
through exchange effects, which have been found to be
very important even in a dilute mixed exciton/electron-
hole plasma at room temperature. In these thermody-
namic conditions the carrier-assisted radiative exciton re-
combination process has been investigated for GaAs-based
and ZnSe-based quantum wells. For a given plasma screen-
ing, the emission rates due to elastic exciton-carrier scat-
tering in ZnSe-based QWs are found to be one to two or-
ders of magnitude greater than those in GaAs QWs. This
is partly due to the fact that for the same value of plasma
screening, the plasma density is greater in ZnSe QWs than
it is in GaAs QWs, but more importantly, because of the
lower ionization degree of the ZnSe QWs plasma. We have
also found that in both systems the X–h scattering chan-
nel is a more efficient one in the case of direct scattering
when the densities of electrons and holes are comparable.
We attribute this essentially to the two-dimensional den-
sity of states which is greater for hole than for electron
systems. The direct terms of the scattering matrix ele-
ments have been found to be negligible compared to the
exchange terms. As a consequence, fermion exchange fa-
vors the X–e− scattering channel for the carrier-assisted
radiative recombination.
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Appendix A: Calculation of the scattering
matrix elements

In this Appendix we show how the two terms of the scat-
tering matrix elements whose expression is given below,
are calculated in the case of exciton-electron scattering.
We write V eX

scat(kcm,k2) as follows:

V eX
scat =

1
2

∫
dr1dr2drh

(
φ†k2+kcm

(r2)Ψ
†
0,κ,0(0, ρ1h) (20)

− φ†k1+kcm
(r1)Ψ

†
0,κ,0(0, ρ2h)

)

× (Vs(ρ1h) + Vs(ρ2h) + Vs(ρ12))
× (Ψ0,κ,kcm(R1, ρ1h)φk2(r2)
− Ψ0,κ,kcm(R2, ρ2h)φk1(r1)) ,

where R1 and R2 are the exciton center of mass coordi-
nates, r1 and r2 the electrons coordinates and rh the hole
coordinate. The relative distances are defined as follows:
ρ1h = |rh − r1|, ρ2h = |rh − r2| and ρ12 = |r1 − r2|.
Note that the attractive electron-hole interaction poten-
tials Vs(ρ1h) and Vs(ρ2h) are negative and the repulsive
electron-electron interaction potential Vs(ρ12) is positive.
Since we consider 1s exciton states only, the value of the
projection of the angular momentum, m, is zero and we
remove the explicit ϕ dependence from the expression of
Ψ0,κ,kcm . The initial state of the free electron is the plane
wave φk characterized by the wavevector k(= k1 or k2),
and its final state the plane wave φk+kcm characterized
by k + kcm, where kcm is the exciton center of mass
momentum that has been transfered during the scatter-
ing process. Equation (20) is similar to the expression in
reference [32].

Starting from equation (20), the first step consists of
identifying the relevant physical terms: the direct and ex-
change terms, V eX

dir and V eX
exch respectively. Calculations

yield the following expressions:

V eX
dir =

∫
d {r}φ†k2 +kcm (r2)Ψ

†
0,κ,0(0, ρ1h) (Vs(ρ2h)

+ Vs(ρ12))Ψ0,κ,kcm(R1, ρ1h)φk2(r2) (21)

and

V eX
exch = −

∫
d {r}φ†k2+kcm

(r2)Ψ
†
0,κ,0(0, ρ1h) (22)

× (Vs(ρ1h) + Vs(ρ2h) + Vs(ρ12))
× Ψ0,κ,kcm(R2, ρ2h)φk1(r1),

where d{r} ≡ dr1dr2drh for ease of notations. An addi-
tional term Vadd appears:

Vadd =
∫
d {r}φ†k2+kcm

(r2)Ψ
†
0,κ,0(0, ρ1h) (23)

×Vs(ρ1h)Ψ0,κ,kcm(R1, ρ1h)φk2(r2),

and before proceeding with the calculations of V eX
dir

and V eX
exch, we show that Vadd = 0. Recalling the ex-

plicit expression of the exciton wavefunction, Ψm,κ,kcm ,

in Section 3, the additional term may be rewritten as:

Vadd =
∫
d{r}e

i(kcm+k2)·r2

A R2
0,κ(ρ1h)Vs(ρ1h)

×e
i(kcm·R1−k2·r2)

A . (24)

We define the Fourier transforms of the square of the
relative motion part of the excitonic wavefunction, equa-
tion (18):

R2
0,κ(ρ1h) =

∑
q1

R̃2
0,κ(q1) eiq1·(rh−r1)

=
A

4π2

∫
R̃2

0,κ(q1) eiq1·(rh−r1)dq1, (25)

and of the scattering potential Vs(ρ−):

Vs(ρ1h) =
∑

q

Ṽs(q) eiq·(rh−r1)

=
A

4π2

∫
Ṽs(q) eiq·(rh−r1)dq, (26)

which we include into equation (24) to find:

Vadd =
1

16π4

∫∫
d{r}d{q}R̃2

0,κ(q1) Ṽs(q)

×eikcm·r2e−i(γekcm+q1+q)·r1 (27)

×e−i(γhkcm−q1−q)·rh ,

where d{q} ≡ dq1dq, γe = me/M and γh = mh/M . Now,
considering the identity

∫
eiq·rdr = 4π2δ(q), where δ de-

notes the Dirac function, the above integral reads:

Vadd =
∫∫

dr2dq1dqδ(γekcm + q1 + q) (28)

×δ(−γhkcm + q1 + q) eikcm·r2R̃2
0,κ(q)Ṽs(q),

(29)

and, since
∫
δ(a− x)δ(b − x)f(x) dx = 0 when a �= b, we

finally find that Vadd = 0.

A.1 The exchange term

We turn now to the exchange term V eX
exch that we arti-

ficially decompose into three terms: V eX
exch = V eX

exch,1 +
V eX

exch,2 + V eX
exch,3:

V eX
exch,1 = −

∫
dr1dr2drh φ

†
k2+kcm

(r2)Ψ
†
0,κ,0(0, ρ1h)

×Vs(ρ1h) Ψ0,κ,kcm(R2, ρ2h)φk1(r1), (30)

V eX
exch,2 = −

∫
dr1dr2drh φ

†
k2+kcm

(r2)Ψ
†
0,κ,0(0, ρ1h)

× Vs(ρ2h) Ψ0,κ,kcm(R2, ρ2h)φk1(r1), (31)
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and

V eX
exch,3 = −

∫
dr1dr2drh φ

†
k2+kcm

(r1)Ψ
†
0,κ,0(0, ρ1h)

× Vs(ρ12) Ψ0,κ,kcm(R2, ρ2h)φk1(r1). (32)

In the same fashion as above we define the Fourier
transforms:

R0,κ(ρ1h) =
∑
q1

R̃0,κ(q1) eiq1·(rh−r1)

=
A

4π2

∫
R̃0,κ(q1) eiq1·(rh−r1)dq1, (33)

R0,κ(ρ2h) =
∑
q2

R̃0,κ(q2) eiq2·(rh−r2)

=
A

4π2

∫
R̃0,κ(q2) eiq2·(rh−r2)dq2, (34)

Vs(ρ2h) =
∑

q

Ṽ −
s (q) eiq·(rh−r2)

=
A

4π2

∫
Ṽ −

s (q) eiq·(rh−r2)dq, (35)

and

Vs(ρ12) =
∑

q

Ṽ +
s (q) eiq·(r2−r1)

=
A

4π2

∫
Ṽ +

s (q) eiq·(r2−r1)dq, (36)

where the + and − signs denote the repulsive and attrac-
tive potentials. Inserting the relevant Fourier transforms
of equations (25), (26), (33–36) into equations (30), (31)
and (32) and performing the same type of calculations as
for V add

scat, we find:

V eX
exch,1 = −A

∫
R̃0,κ(−k2−q)R̃0,κ(k2+γhkcm+q)Ṽs(q)dq,

(37)

V eX
exch,2 = −AR̃0,κ(k2 + γhkcm)

∫
R̃0,κ(−k2 −q)Ṽ −

s (q) dq,

(38)
and

V eX
exch,3 = −AR̃0,κ(k2)

∫
R̃0,κ(k2 + γhkcm − q)Ṽ +

s (q)dq.

(39)
The exchange term, V eX

exch, depends on the properties of
each scattering partner: exciton binding energy, kinetic en-
ergies, effective masses of the electrons, hole and exciton.
To obtain the exchange term for the exciton-hole scatter-
ing, one simply needs to swap the effective masses me and
mh where appropriate and change the overall sign.

A.2 Direct term

Finally, we show the main steps of the calculation of the
direct term starting from equation (21). We write V eX

dir =
V +

dir + V −
dir and we need only to explicit calculations for

V −
dir as V +

dir has a similar structure. V −
dir is the first of the

two terms in equation (21):

V −
dir =

∫
dr1dr2drh φ

†
k2+kcm

(r2)Ψ
†
0,κ,0(0, ρ1h)

×Vs(ρ2h)Ψ0,κ,kcm(R1, ρ1h)φk2(r2) (40)

Using the explicit expressions of the electron plane wave
and exciton wavefunction of Section 3 as well as the defini-
tions of the Fourier transforms of equations (25) and (35),
we find:

V −
dir =

1
16π4

∫
dr1dr2drhdqdq1R̃2

0,κ(q)Ṽ −
s (q) (41)

× ei(kcm+q)·r2 ei(q1−γekcm)·r1 e−i(q+q1+γhkcm)·rh .

This 10-dimensional integral can be simplified using again
the definition the δ-function given above:

V −
dir = AR̃2

0 ,κ(γekcm)Ṽ −
s (kcm). (42)

Doing the same calculations with V +
scat, equation (21)

can be reduced to the following expression in the Fourier
space:

V eX
dir (kcm) =A

(
R̃2

0,κ(γekcm)Ṽ −
s (kcm) + R̃2

0,κ(−γhkcm)

× Ṽ +
s (kcm)

)
. (43)

Since the Fourier transforms of the interaction poten-
tial and the squared wavefunctions are radial functions,
V eX

dir (kcm) only depends on the modulus of the vector kcm.
Combining equation (43) with the Fourier transform of
equation (2), we obtain the final expression of the direct
term of the exciton-electron scattering matrix elements,
which reads

V eX
dir (kcm, κ) =

e2

2ε0εr

R̃2
0,κ(γhkcm) − R̃2

0,κ(γekcm)

kcm + qs
. (44)

Note that unlike the exchange term, the direct term only
depends on the exciton properties: kinetic energy, binding
energy and effective masses. We find that V hX

dir (kcm) is the
exact opposite of V eX

dir (kcm). This is due to the fact that
both free carriers wavefunctions are assumed to be plane
waves.

Appendix B: Contribution of the
exciton-electron direct scattering
to photon emission

To calculate the contribution of the exciton-electron di-
rect scattering to photon emission, ReX , we start from
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the evaluation of the discrete sum over all the vectors
k2 in equation (19). In this case V eX

scat(kcm, k2) reduces
to V eX

dir (kcm) so that the scattering matrix element can be
taken out of the sum over the vectors k2. To proceed, one
can approximate the sum S:

S =
∑
k2

exp
(
−β �

2k2
2

2me

)
(45)

×δ
(
Eg − EX

b +
�

2k2
cm

2M
− �Ω

− �
2

2me
(k2

cm + 2kcm · k2)
)
,

by a 2D integral:

S =
A

4π2

∫ kmax
2

kmin
2

∫ 2π

0

dk2dθ k2 exp
(
−β �

2k2
2

2me

)
(46)

×δ
(
Eg − EX

b +
�

2k2
cm

2M
− �Ω

− �
2

2me
(k2

cm + 2kcm · k2)
)
.

The argument of the δ function in equation (46), is of
the form X − Y cos θ, where θ is the angle between the
vectors kcm and k2. The integral over θ , I [δ], can hence
be calculated analytically:∫ 2π

0

δ(X − Y cos θ)dθ =
2

|Y sin[cos−1X/Y ]| (47)

if |X | < |Y |. We find:

I [δ] =
2∣∣∣ �2

me
kcmk2 sin

[
cos−1

(
EX−�Ω−�2k2

cm/2me

�2kcmk2/me

)]∣∣∣ ,
(48)

where X = EX − �Ω − �
2k2

cm/2me, Y = �
2kcmk2/me,

and with the above condition on X and Y, the
limits of the integral equation (46) are: kmin

2 =(
EX − �Ω − �

2k2
cm/2me

)
me/�

2kcm and kmax
2 → ∞.

Using the identity
∣∣sin[cos−1Θ]

∣∣ =√
1 − cos2[cos−1Θ] =

√
1 − Θ2 and combining equa-

tions (46) and (48) lead to:

S =
A

2π2

∫ ∞

kmin
2

k2 exp
(
−β �

2k2
2

2me

)
dk2√

�4k2
cmk2

2
m2

e
−

(
EX − �Ω − �2k2

cm

2me

)2
. (49)

Note that the analytical calculation would stop at this
stage if the full scattering matrix element Vscat(kcm, k2)
were considered, since it would explicitly appear in the
above integral. In the case of direct scattering, Vscat only
depends on kcm and hence we may proceed with the ana-
lytical calculations as follows.

With two successive changes of variables: K2 = k2
2 and

K ′
2 = K2/k

min2

2 , equation (49) becomes:

S =
Amek

min
2

4π2�2kcm

∫ ∞

1

exp
(
−β �

2kmin2
2

2me
K ′

2

)

(K ′
2 − 1)1/2

dK ′
2. (50)

Considering the identity:
∫ ∞
1
e−μx(x − 1)−1/2 dx =√

π/μ e−μ, we find:

S =
Am

4π2�2kcm

(
2πme

β�2

)1/2

exp

(
−β �

2kmin2

2

2me

)
. (51)

Finally, inserting equation (51) into equation (19) and ap-
proximating the discrete sum over all the vectors kcm by
an integral lead to the expression of the emission rate,
ReX(�Ω):

ReX(�Ω) =
α(1 − α)N2

√
2πmeβ3

M

× 4πξ�Ω/Eg

(1 − �2Ω2/E2
g)2 + 4πξ

×
∫ ∞

0

dkcm |V eX
scat(kcm)|2 (52)

×e−β

[
�
2k2

cm
2M + me

2�2k2
cm

(
Eg−EX

b −�Ω−mh
me

�
2k2

cm
2M

)2]
.

The expression of RhX(�Ω) is simply obtained by swap-
ping the effective masses me and mh where appropriate.
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