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The two-dimensional hydrogen atom revisited
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The bound-state energy eigenvalues for the two-dimensional Kepler problem are
found to be degenerate. This “accidental” degeneracy is due to the existence of a
two-dimensional analog of the quantum-mechanical Runge—Lenz vector. Reformu-
lating the problem in momentum space leads to an integral form of the &ogey
equation. This equation is solved by projecting the two-dimensional momentum
space onto the surface of a three-dimensional sphere. The eigenfunctions are then
expanded in terms of spherical harmonics, and this leads to an integral relation in
terms of special functions which has not previously been tabulated. The dynamical
symmetry of the problem is also considered, and it is shown that the two compo-
nents of the Runge—Lenz vector in real space correspond to the generators of
infinitesimal rotations about the respective coordinate axes in momentum space.
© 2002 American Institute of Physic§DOI: 10.1063/1.1503868

I. INTRODUCTION

A semiconductor quantum well under illumination is a quasi-two-dimensional system, in
which photoexcited electrons and holes are essentially confined to a plane. The mutual Coulomb
interaction leads to electron—hole bound states known as excitons, which are extremely important
for the optical properties of the quantum well. The relative in-plane motion of the electron and
hole can be described by a two-dimensional Sdimger equation for a single particle with a
reduced mass. This is a physical realization of the two-dimensional hydrogenic problem, which
originated as a purely theoretical constructtekn important similarity with the three-dimensional
hydrogen atom is the “accidental” degeneracy of the bound-state energy levels. This degeneracy
is due to the existence of the quantum-mechanical Runge—Lenz vector, first introduced By Pauli
in three dimensions, and indicates the presence of a dynamical symmetry of the system.

The most important study relating to the hidden symmetry of the hydrogen atom was that by
Fock in 1935° He considered the Schdimger equation in momentum space, which led to an
integral equation. Considering negative-enefgpund-state solutions, he projected the three-
dimensional momentum space onto the surface of a four-dimensional hypersphere. After a suitable
transformation of the wavefunction, the resulting integral equation was seen to be invariant under
rotations in four-dimensional momentum space. Fock deduced that the dynamical symmetry of the
hydrogen atom is described by the four-dimensional rotation grou@)S@hich contains the
geometrical symmetry S@) as a subgroup. He related this hidden symmetry to the observed
degeneracy of the energy eigenvalues.

Shortly afterwards, Bargmafirmade the connection between Pauli's quantum mechanical
Runge—Lenz vector and Fock’s discovery of invariance under rotations in four-dimensional mo-
mentum space. Fock’s method was also extended by Alfiltevthe case ofl dimensions ¢
=2). A comprehensive review concerning the symmetry of the hydrogen atom was later given by
Bander and Itzyksof! including a detailed group-theoretical treatment and extension to scatter-
ing states.

Improvements in semiconductor growth techniques over the subsequent decades, which en-
abled the manufacture of effectively two-dimensional structures, led to a resurgence of interest in
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the two-dimensional hydrogen atom. The Runge—Lenz vector for this case was defined for the first
time® and real-space solutions of the Safirmer equation were applied to problems of atomic
physics in two dimensions.

Recent studies have focused on diverse aspects of the hydrogenic probletrdifirensional
case has been reconsidered, leading to a generalized Runge—Lenz(seet®ef. 10 and refer-
ences therein The algebraic basis of the dynamical symmetry has also been given a thorough
mathematical treatment:*2

In the present work we return to the two-dimensional problem, and use the method of Fock to
obtain a new integral relation in terms of special functions. The dynamical symmetry of the system
is also considered, and a new interpretation of the two-dimensional Runge—Lenz vector is pre-
sented.

II. PROBLEM FORMULATION

A. Preliminaries

The relative in-plane motion of an electron and hole, with effective masgeand my,,
respectively, may be treated as that of a single particle with reduced grass.m, /(mg+my)
and energ\E, moving in a Coulomb potentidl(p). The wavefunction of the particle satisfies the
stationary Schrdinger equation

1(9( a) 1a2+v()
pap\Pap] pPag? TP

where(p,¢) are plane polar coordinates. Note that excitonic Rydberg units are used throughout
this article, which leads to a potential of the foliip) = —2/p.

The eigenfunctions of Edq1) are derived in Appendix A. It is well known that the bound-state
energy levels are of the form

HWY (p)= V(p)=EV(p), 1

1
E=———, n=012,., 2
(n+3)?2 ?

wheren is the principal quantum number. Notably, E§) does not contain explicitly the azi-
muthal quantum numben, which enters the radial equati¢eee Appendix A, Eq(A4)]. Each
energy level is (B+ 1)-fold degenerate, the so-called accidental degeneracy.

It is convenient to introduce a vector operator corresponding te-firejection of the angular
momentum) ,=e,L,, wheree, is a unit vector normal to the plane of motion of the electron and
hole. We now introduce the two-dimensional analog of the quantum-mechanical Runge—Lenz
vector as the dimensionless operator

A A A2
A:(qXLz_LzXq)_;Pv ©)
Whereélz—iV is the momentum operator. Note that lies in the plane and has Cartesian
components, andA, .
L., A, andA, represent conserved quantities and therefore commute with the Hamiltonian:
[H,L,]=[H,AJ=[H,A/]=0. 4
They also satisfy the following commutation relations:
[LZ1AX]:iAy- (5)

[L,.A)]=—iA, 6)
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[Ac,A,]=—4iLH. 7

B. Derivation of energy eigenvalues from A

The existence of the noncommuting operatégsand A, representing conserved physical
quantities, implies that the Runge—Lenz vector is related to the accidental degeneracy of the
energy levels in two dimensioridWe now present a simple interpretation of the hidden symmetry
underlying this degeneracy. A

For eigenfunctions of the Hamiltonian we can repl&tdy the energyE, and defining

A= ®
we obtain the new commutation relations:
[L,.A]=iA, )
[L,.A)]=—iA], (10)
(A A)]=il,. (11)

If we now construct a three-dimensional vector operator
J=A"+L,, (12)
then the components &satisfy the commutation rules of ordinary angular momentum:
[:]j J=i éjkljl : (13

whereej is the Levi-Civita symbol.
Noting thatA’-L,=L,-A’'=0, we have

P=(A"+L,)2=A"2+L2 (14)

where the operat(fi2 has eigenvaluef(j +1) and commutes with the Hamiltonian.

We now make use of a special expression rela@iﬁgmdlii, the derivation of which is given
in Appendix B:

AZ=H(4L%+1)+4. (15)
Substituting in Eq(14) and again replacinél with E, we obtain

Jzz—i[E(4£2+1)+4]+£2 (16)
4E : z

Because[ﬁ,jz]zo, an eigenfunction of the Hamiltonian will also be an eigenfunctiorf?of
Operating with both sides of E416) on an eigenfunction of the Hamiltonian, we obtain for the
eigenvalues of?:

1 1
j(j+1)=- 2T El (17)

Rearranging, and identifyingwith the principal quantum number we obtain the correct expres-
sion for the energy eigenvalues:
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1
E=———, n=012,.. (18)
(n+3)?

Note that thez-component ofl is simpIyI:Z. Recalling that the eigenvalues IB{ are denoted
by m, there are (2+1) values ofm for a givenj. However, ag =n, we see that there are 12
+1) values ofmfor a given energy, which corresponds to the observedH2)-fold degeneracy.

lll. FOCK'S METHOD IN TWO DIMENSIONS

A. Stereographic projection

The method of FocR,in which a three-dimensional momentum space is projected onto the
surface of a four-dimensional hypersphere, may be applied to our two-dimensional problem. We
begin by defining a pair of two-dimensional Fourier transforms between real space and momentum

space:
@)= [ w(perap (19
1 )
Vo= o J ®(q)e P dg. 20

We shall restrict our interest to bound states, and hence the eEerquS will be negative.
Substitution of Eq(20) in Eq. (1) yields the following integral equation fab(q):

s 2 1 ®(q’)dq’
(9°+qg)®(q) J._TE:??T_'

ar

(21)

The two-dimensional momentum space is now projected onto the surface of a three-
dimensional unit sphere centered at the origin, and so it is natural to scale the in-plane momentum
by go. Each point on a unit sphere is completely defined by two polar anglasd ¢, and the
Cartesian coordinates of a point on the unit sphere are given by

. ZCIOCIx
u,=sinfcos¢= , (22
X ¢ 9°+dg
. . 2000y
u,=singsin¢= —2+q0' (23
2 2
—do
u,=cosf= Tqé (24)
An element of surface area on the unit sphere is given by
dQ=sing d6 d¢ 2G0 2d (25)
=sin = 5— ,
q?+q3)
and the distance between two points transforms as
2
lu—u’'|= o (26)

(q2+q(z))l/z(q,2+qé)1/2|q_¢|-

If the wavefunction on the sphere is expressed as
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1 q2+qg>3/2
Uu)=— q) ) 2
x(u) Jq—o(—Z% (a) (27)
then EqQ.(21) reduces to the simple form
1 x(u")dQ’
x(u)= quof |U—U’| (29)

B. Expansion in spherical harmonics

Any function on a sphere can be expressed in terms of spherical harmonics, o fove
have

© I
W=2 2 AnY(04), (29

whereY["(6, ¢) are basically defined as in Ref. 14:

- 2061 (=[m)t _
Y|(0,¢)=C|m ?WPI (COSG)elm¢, (30)

whereP',{“'(cose) is an associated Legendre function as defined in Ref. 15. The congfdatan
arbitrary “phase factor.” As long af,,|>=1 we are free to choosg,,,, and for reasons which
will become clear we set

Cim=(—1)Im. (31)

The kernel of the integral in Eq28) can also be expanded in this basis®as

1 0 A
] = 2 YE(0.9)YE(0',¢"). (32

LV 2N+1

Substituting Eqs(29) and (32) into Eq. (28) we have

o0 Il

1
E 2 AmY['(0,¢) = E > 2 E ST Aum Y0 ¢")
2

qo 17=0 15=0 mi=—1q my=—1,

XY2(0,4)Y7(0',47) dOY. (33
We now make use of the orthogonality property of spherical harmonics to redu¢83tdp
the following:
© | 2 [=4] |1
mY(6,¢)=— —_— 0, 34
Zo mzil (6.4)= do I1§:O mlz‘i Iy 2|1+1 S 1 (6:9). 39

Multiplying both sides of Eq(34) by Y™ (6,¢) and integrating oved() gives

Anm = Anm (35

Qo(2n+1)

where we have again used the orthogonality relation for spherical harmonics. The final step is to
rearrange fogy and identify the index with the principal quantum number. This enables us to
find an expression for the energy in excitonic Rydbergs:
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=—qi=— , n=0,12,.... (36)

(n+?

This is seen to be identical to E(R).
For a particular value of, the general solution of E¢28) can be expressed as

Xn(U)= 2 AnnYT(6, ). (37)

Each of the functions entering the sum in E8j7) satisfies Eq(28) separately. So, for each value
of nwe have (2+1) linearly independent solutions, and this explains the observed (3-fold
degeneracy.

We are free to choose any linear combination of spherical harmonics for our eigenfunctions,
but for convenience we simply choose

Xnm(u):Aannm( 0,0). (39

If we also require our eigenfunctions to be normalized as follows:

1 1
) o=

then Eq.(38) reduces to

q q
L (@ da= [ w@lap-1. @

)(nm(u)=27TYnm(0,d)). (40

Applying the transformation in Eq27), we can obtain an explicit expression for the ortho-
normal eigenfunctions of Eq21):

o (q)= /2 (n—|ml)!
nm(d) = Cnm 7T(n+|m|)!

where we have used the fact thgi= (n+3) 1, and @ and ¢ are defined by Eqg22)—(24).

3/2

2 .
Ao PIM(cosg)em?, (41)

9> +0;

C. New integral relations

To obtain the real-space eigenfunctiofi¢p) we make an inverse Fourier transform:

1 . 1 27 ([ . ,
V(p)= Wf d(q)e '9dg= Wfo fo O (q)e ' qdqdg’, (42)

where ¢’ is the azimuthal angle between the vectprandq. However, if we now substitute Eq.
(41) into this expression, we have to be careful with our notation. The angle labdle&q. (41)
is actually related tap’ via

¢=¢'+o,, (43

where ¢, is the azimuthal angle of the vectpy which can be treated as constant for the purposes
of our integration.
Taking this into account, the substitution of Eg1) into Eq. (42) yields
Com _ [(n—[m])! aimo FWJ ¥ (e’ —ap cos ) ,
V(p)= 2m) (n+|m|)| P, "(cosh)e gdqde’.

(44)

20
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From Eq.(24) we obtain

9’—dg
PI™(cose) =P : (45)
n " | 7T 2
and we use the following form of Bessel's integtll:
2m ’ ’
f e!(me = o8t dp’ = 2r(—1)™I(p), (46)
0

whereJ,,(qp) is a Bessel function of the first kind of order Substituting Eqs(45) and(46) into
Eq. (44) leads to

32
|ml
Pn

q2_ 2

9°+dp

20o

¥ (p)= e
0

_iym - !
Com(—1) (n—[my) f Jn(gp)gdag. (47

(n+|ml)!

We now make a change of variabless qgp andyzqzlqg, so that Eq(47) becomes

V(p)=cnm(—1)""M(— n-:||rr:||))' Im¢f P|m‘ In(X\y)

d y 48
where we have used the fact ﬂ’?at

1+y

-y
1+y

[m|

(49

y_l _ n+mp|m|
y+1 =(=1 Pn

If we now equate the expression fi(p) in Eq. (48) with that derived in Appendix A, we
obtain the following:

. m(X\y) 2x)!Me ™
cont =1 =i R T S 6y = B 0. 60

The value ofc,,,, chosen earlier in Eq.31) ensures that both sides of E&O) are numerically
equal. If we restrict our interest tm=0, then the relation simplifies to

Fpm(l_y In(xVy) (= 1)"(2x) e
o "\1+y

EERY S A ) )
As far as we can ascertain, this integral relation between special functions has not previously
been tabulated. Far,m=0 we recover the known integral relation

L2™ (2x), n,m=0,1,2,..; m=n. (51)

f Jo(xvy)

ﬁ'd =2e % 52
(1 y)32 ( )
IV. DYNAMICAL SYMMETRY

A. Infinitesimal generators

Consider now a vectou from the origin to a point on the three-dimensional unit sphere
defined in Sec. Il A. If this vector is rotated through an infinitesimal angie the (u,u,) plane,
we have a new vector

u’'=u+4du, (53
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where the components of are given in Eqs(22)—(24), and
ou=ag Xu. (54)

This rotation on the sphere corresponds to a change in the two-dimensional momentugtérom
g’. The Cartesian components of E§3) are then found to be

2000, 2Go0x  9°—0j
U'= - + ) 55
Q24 qR Pl gt 9

, 200Gy 2000y

u,= = , 56
Y q'%+dp 9’+dg (%0
u,zq'z—qu 9*-qs 2000 57
2 g%+a; o*td; o oP+ap]
whereg?=q5+qj.
After some manipulation we can also find the componentégefq’ —q:
o’ —d5— 205
60x= N R (58
UxQy
ogy=—a——. 59
Qy a0 (59
The corresponding change #(q) is given by
2_ 42 2
q _qo_qu d axQy d
SD(g)= — — 2+q2)%2d . 60
(@ (P+qD)%" 240 0y G 9ay [(q°+ag)”“®(a)] (60)
We can write this as
i -
oP(q)=— 5 ~aA®(a), (61)
do
where the infinitesimal generator is given by
A= (67— G~ 200) e 20,0y | (4P ) (62
X (q2+qg)3/2 0 X A0y X yaqy 0

We now make use of the following operator expression in the momentum representation:
p=ex+tey=ivy, (63)
and the commutation relation
[p.f(@)]=iVyf, (64)
to derive a more compact expression I:h,[:
Ac=(0?= q3)%—20,(0-p) — 3idiy. (65)

By considering an infinitesimal rotation in theifu,) plane we can obtain a similar expression
for Ay:
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Ay=(q?—qd)y—2a,(q-p) - 3iq, . (66)

These expressions operate on a particular energy eigenfunction with eigeﬁw@uef we
move the constant g3 to the right and replace it with the Hamiltonian in momentum spate,

A= g3+ XH = 20,(qrp) — 3id, (67)
Ay=q?y+5H—20,(q-p) — 3iqy, (68)
then;lx and;ly can operate on any linear combination of eigenfunctions.

B. Relation to Runge—Lenz vector

Recall the definition of the two-dimensional Runge—Lenz vector in real space:
A A A2
A:(qXLz_LzXq)_;P- (69)

Using |:Z=p>< g, and the following identity for the triple product of three vectors:
aX(bxXc)=(a-c)b—(a-b)c, (70

we can apply the commutation relatipp,q]=i to rewrite Eq.(69) in the form:

~ R 2 A .
A=0°p+p ql—;)—Zqup%—&q- (7D

If we now return to the expression for the real-space Hamiltonian il Egit is apparent that
we may substitute

2. (72)
q p
in Eq. (71) to yield

A=8%p+ pH—24(§-p)—3i4. (73

Comparing this with Eq967) and(68), it is evident that the two components of the Runge—Lenz
vector in real space correspond to the generators of infinitesimal rotations in,thg and uyu,)
planes.

V. CONCLUSION

We have shown that the accidental degeneracy in the energy eigenvalues of the two-
dimensional Kepler problem may be explained by the existence of a planar analog of the familiar
three-dimensional Runge—Lenz vector. By moving into momentum space and making a stereo-
graphic projection onto a three-dimensional sphere, a new integral relation in terms of special
functions has been obtained, which to our knowledge has not previously been tabulated. We have
also demonstrated explicitly that the components of the two-dimensional Runge—Lenz vector in
real space are intimately related to infinitesimal rotations in three-dimensional momentum space.

APPENDIX A: SOLUTION OF REAL-SPACE SCHRO DINGER EQUATION

We apply the method of separation of variables to @g. making the substitution

V(p)=R(p)D (). (A1)
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Introducing a separation constant, we can obtain the angular equation

d2¢+ =0 A2
W m=® =0, (A2)
with the solution
()= =, (A3)
N2
The corresponding radial equatiéwith E= —qé) is

d2R+1dR+ 2, m Re0 a4
a7 "o dp Tl 7RO A

We make the substitution
R(p)=Cpl™e™%w(p), (A5)

whereC is a normalization constant. This leads to the equation

d?w dw
Pd—pz+(2|m|+1—2%P)$+(2—2|m|%—%)w=0- (A6)

Making a final change of variable@=2q,p, we obtain

d?w dw (1 1) ~
ﬁd—[;2+(2|m|+1—,3)@+ %—Iml—z w=0. (A7)

This is the confluent hypergeometric equattdmyhich has two linearly independent solutions. If
we choose the solution which is regular at the origin, then this becomes a polynomial of finite
degree ifqy=(n+3) ! with n=0,1,2,.... EquatiorfA7) then becomes the associated Laguerre
equation'® the solutions of which are the associated Laguerre polynomials:

w=L2"(8)=L2"(2q0p). (A8)

We can now write the real-space wavefunction in the form
€ Imlg-dop 2 ims
Von(p)= 5 plMe LA (2q0p) €™, (A9)

where the reason for the subscript ¢ris explained in Sec. Il C.
To normalize this wavefunction we need to make use of the intégral

(n+|m)!

W(Zn-ﬁ- 1). (A10)

fo & 2907(2qop) 2™ L2 (200p)L27 (200p) d(2010p) =

The normalized wavefunctions are therefore

do(n—[m))! _
W on(p)= \/7f(n+—||m||)!<2qop>me%Ptﬁﬂmwzqop)e'm%, (A1)

satisfying the following orthogonality condition:
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f qulml(p)q’nzmz(p) dp= 5n1n25m1m2- (A12)

APPENDIX B: DERIVATION OF EQ. (15)

From Eq.(3) we have

a2 ol f i 2ol —rocax i) —id2 2o torax [ —id
A (gXL,—L,Xq) pP [2(axL,)—iq] pP [2(gXL,)—iq]

2 A s
—;[2(qXLz)—IQ]'P+4- (B1)

We further expand as follows:
[2(6XL,) —1§12=4(§XL,)?—2i§- (X L,)—2i(axL,) §—a?
= 4G2L2+ 267 §2=GA(4L2+ 1), (B2)

and

2 a2 2 -,
—;P'[Z(QXLZ)—IQ]—;[Z(QXLZ)—IQIIF—;(4|—z+1)- (B3)

Substituting Eqs(B2) and (B3) into Eq. (B1) gives

A2=(Q2(4L2 1—E 4L2+1)+4 B4
g( z+)p( ;+1)+4, (B4)

which, from Eq.(72), is just

A2=H(4L2+1)+4. (B5)
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