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One-dimensional Van Hove polaritons
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We study the light-matter coupling of microcavity photons and an interband transition in a one-dimensional
(1D) nanowire. Due to the Van Hove singularity in the density of states, resulting in a resonant character of the
absorption line, the achievement of strong coupling becomes possible even without the formation of a bound
state of an electron and a hole. The calculated absorption in the system and corresponding energy spectrum reveal
anticrossing behavior characteristic of the formation of polariton modes. In contrast to the case of conventional
exciton polaritons, the formation of 1D Van Hove polaritons will not be restricted to low temperatures and can
be realized in any system with a singularity in the density of states.
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I. INTRODUCTION

Light-matter coupling is an area of research emerging at the
boundary between condensed matter physics and optics which
has both fundamental and applied dimensions. The possibility
of reaching the regime of strong coupling, for which confined
cavity photons and matter excitations are strongly mixed, is of
particular interest.1 In this situation a new type of elementary
excitations, known as polaritons, appear in the system. Having
a hybrid nature, they combine the properties of both light
and matter. Several geometries have been proposed for the
realization of the strong-coupling regime.

The interaction of a cavity photon mode with a two-level
system which mimics optical transitions in an individual atom
or single quantum dot (QD) is the origin of cavity quantum
electrodynamics (cavity QED).2,3 One should note that the
achievement of strong coupling in such a system is a nontrivial
task due to a rather small light-matter interaction constant.
However, recent advances in nanotechnology have led to the
possibility of creating high-finesse optical cavities and have re-
sulted in the observation of Rabi doublets and Mollow triplets
in the emission spectrum of individual QDs.4–6 Moreover, the
strong coupling of a single photon to a superconducting qubit,
which has a two-level structure as well, has been demonstrated
in a radio-wave superconducting cavity.7

To increase light-matter coupling, quantum wells (QWs)
can be used instead of individual QDs. In this case, cou-
pling occurs between a two-dimensional (2D) QW exciton,
associated with a sharp absorption peak slightly below the
band-gap energy, and a photonic mode of a planar cavity tuned
in resonance with it. Observed for the first time two decades
ago,8 exciton-polariton physics is now experiencing increased
interest connected to the possible realization of polariton lasing
with an extremely low threshold,9 and the achievement of
Bose-Einstein condensates10 (BECs) and superfluid states11

for temperatures much higher than for atomic systems12,13

and cold excitons in solids.14 This is a consequence of the
small effective mass of polaritons which allows a pronounced
manifestation of quantum collective phenomena for a critical

temperature around 20 K in CdTe structures10 and even at
room temperatures in wide-band-gap materials with large
exciton binding energy and strong light-matter interaction
(GaN, ZnO).15,16 Additionally, polaritons have been proposed
as basic ingredients for spinoptronic devices17 and all-optical
logical elements and integrated circuits.18,19

While most attention in the field of exciton polaritons is
drawn to two-dimensional structures, the strong light-matter
interaction of excitons in one-dimensional nanowires with
a confined cavity mode has also been studied.20,21 Their
properties were shown to be improved over the exciton-
polaritons analogs in quantum wells due to their larger
exciton binding energy.21 However, the physics of light-matter
coupling remains essentially the same.

Another system where strong light-matter coupling was
experimentally achieved is the intersubband transitions in
quantum wells. It was shown by Dini and co-workers22 that
the absorption of intersubband resonance placed in a cavity
reveals the characteristic anticrossing behavior. The attractive
peculiarity of such a system in comparison to those based on
conventional interband exciton polaritons is a nonvanishing
ratio of the Rabi frequency to the transition energy, which
enables an exploration of the ultrastrong-coupling regime.23

In addition, unlike interband transitions in a 2D system, strong
electron-hole interactions and the formation of excitons are not
necessary for obtaining the strong-coupling regime,24 although
they play a certain role in structures with highly doped QWs,
where the formation of intersubband plasmon polaritons26,27

and Fermi edge polaritons28 can be observed.
For any experimental geometry, the main condition which

must be satisfied to drive the system into strong coupling is
the presence of a narrow resonance in its photoabsorption
spectrum. Mathematically, this condition reads

g = h̄�R

2
� γcav − γex, (1)

where g denotes the light-matter coupling strength, �R is
the corresponding Rabi frequency (the light-matter interaction
constant), γcav is the damping constant of the cavity mode,
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and γex is the width of the absorption resonance.1,25 In 2D
interband absorption this condition requires strong exciton-
hole attraction, resulting in the formation of an exciton.
However, in the 1D case this is not strictly speaking necessary,
since the behavior of the density of states ρ(E) in 2D and 1D is
qualitatively different. In the former case, the density of states
is constant, while in the latter it diverges around the points E0

at which the energy as a function of the momentum k reaches
its minimum,

ρ(E) ∼ 1√
E − E0

. (2)

This peculiarity, known as a Van Hove singularity, makes the
optical properties of 1D nanostructures different from those of
the bulk and 2D cases and leads to the resonant character of
photoabsorption even without any excitonic effects.

In this article we analyze the possibility of the realization
of the strong-coupling regime between a cavity photon and
the interband transition of a one-dimensional nanowire driven
by the presence of the Van Hove singularity in the 1D
density of states. We consider the case of the cavity mode
tuned to the interband transition, while the 1D exciton is
detuned far from the resonance and thus does not affect the
properties of the system in the frequency range we consider.
The demonstrated spectrum of the elementary excitation
reveals anticrossing behavior characteristic of the formation
of polaritonic modes for realistic cavity quality factors. We
show that this effect is robust against both finite-temperature
and interaction corrections.

II. MODEL

We consider a system consisting of a 1D semiconductor
wire embedded in an optical microcavity, which is tuned into
resonance with a direct interband transition (see the sketch in
Fig. 1).

To calculatethe optical response of the coupled wire-
resonator system, we use an approach based on Green’s
function techniques. Information about the dispersion of
elementary excitations in the coupled quantum-wire–cavity
system can be extracted from the poles of the Green’s function
of the cavity photon interacting with the interband transition
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y

x
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FIG. 1. (Color online) Sketch of the system. A semiconductor
microcavity is formed with two pairs of distributed Bragg reflectors
(DBRs) with the cavity width in the z and y directions being Lc. The
length of the 1D semiconductor wire is L.
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FIG. 2. (a) Feynman diagrams corresponding to the renormalized
polarization operator �, written as a sum of diagrams accounting for
processes of multiple reemissions and reabsorptions. c and v stand for
the conduction and valence bands, respectively. (b) Dyson equation
for the operator �(q,ω). The vertex g of the bubble diagrams denotes
the coupling constant between the cavity photon and the interband
excitation and the dashed line corresponds to the bare cavity photon
Green’s function D0. (c) Dyson equation for the photon Green’s
function D, represented by a double-dashed line, accounting for light-
matter coupling.

D(q,ω). The absorption spectrum can be determined from the
polarization operator �(q,ω). The formalism we are going to
use is analogous to that developed in Ref. 27 for intersubband
transitions.

We start with a calculation of the polarization operator,
accounting for the possibility of multiple reemissions and
reabsorptions of a cavity photon by the interband transition
in the quantum wire. These processes can be represented
graphically as an infinite set of diagrams shown in Fig. 2(a),
which can be reduced to the Dyson equation shown in Fig. 2(b).
These series diagrammatically describe the strong light-matter
coupling regime, where multiple interaction with the cavity
mode renormalizes the overall absorption in the system. The
corresponding solution of the Dyson equation reads

�(q,ω) = �0(q,ω)

1 − g2D0(q,ω)�0(q,ω)
, (3)

where �0 denotes the interband polarization operator depict-
ing excited electron-hole pairs in the conduction and valence
bands and g stands for the light-matter interaction constant.
D0 is a propagator of the cavity photon, given by27

D0(q,ω) = 2h̄ωcav(q)

h̄ω2 − h̄ω2
cav(q) + 2iγcavh̄ωcav(q)

, (4)

with γcav = h/τph representing the damping of the cavity mode
appearing due to the imperfectness of the cavity, where τph is
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the cavity photon lifetime. h̄ωcav denotes the dispersion of the
cavity photon and can be written as

h̄ωcav(q) = h̄c

n
|q| = h̄c

n

√
q2

x + q2
y + q2

z , (5)

where n is the refractive index of the cavity and c denotes the
speed of light. The confinement in the y and z directions leads
to a quantization of the photon momentum components qy and
qz, while it can freely propagate in the x direction. Here we are
interested in the photonic mode with the lowest energy which
corresponds to the single antinode lying in the center of the
cavity. The dispersion of the cavity photon as a function of qx

(in the following we denote it as q for simplicity) reads

h̄ωcav(q) = h̄c

n

√
q2 +

(
π

Lc

)2

+
(

π

Lc

)2

≈ ch̄Lc

2
√

2πn
q2

+
√

2πch̄

nLc

≡ h̄2q2

2mph
+ Eg + δ, (6)

where mph is the effective mass of the photon and δ is the
detuning between the cavity mode and the band gap Eg .

The interband polarization operator �0 used in Eq. (3)
describes the absorption of the wire in the absence of the
cavity. Strictly speaking, its calculation requires a full account
of the many-body interactions in the system and thus represents
a formidable problem. In the current work, however, we are
interested in the effects of the Van Hove singularity only, and
as a first approximation we consider noninteracting particles.
However, in the later discussion we will account for Coulomb
interactions using the random-phase approximation (RPA) and
compare the results with those of the noninteracting case. The
bare interband polarization operator �0(q,ω) is represented
by a “bubble” diagram and can be calculated as

i�0(q,ω) = −
∫

dk

2π/L

dν

2π/h̄
[iGe(k + q,ν + ω)iGh(k,ν)

+ iGh(k + q,ν + ω)iGe(k,ν)]. (7)

Here Ge(q,ω) and Gh(q,ω) are the Green’s functions of an
electron in the conduction band and a hole in the valence
band, respectively,

Ge(q,ω) = 1

h̄ω − Eg − h̄2q2/2me + iδ
, (8)

Gh(q,ω) = 1

h̄ω + h̄2q2/2mh − iδ
, (9)

where me and mh are the effective electron and hole masses
(both taken to be positive), and δ is an infinitesimal parameter.
For the case of zero temperature an analytical integration of
Eq. (7) can be performed, which leads to an explicit expression
for the bare polarization operator �0:

�0(q,ω) = L
√

2μ

h̄

(
f1(q,ω)√

h̄ω + Eg + h̄2q2/M − iγex

− if2(q,ω)√
h̄ω − Eg − h̄2q2/M + iγex

)
, (10)

where μ denotes the reduced mass, μ−1 = m−1
e + m−1

h , M =
me + mh, and L is the length of the wire. The functions f1(q,ω)

and f2(q,ω) are given by

f1(q,ω) = 1

π

[
tan−1

(
π/a + βeq√

2μ(h̄ω + Eg + h̄2q2/M − iγex)

)

+ tan−1

(
π/a − βeq√

2μ(h̄ω + Eg + h̄2q2/M − iγex)

)]
,

(11)

f2(q,ω) = i

π

[
tanh−1

(
π/a + βhq√

2μ(h̄ω − Eg − h̄2q2/M + iγex)

)

+ tanh−1

(
π/a − βhq√

2μ(h̄ω − Eg − h̄2q2/M + iγex)

)]
,

(12)

where we introduced the notations βe = me/M and βh =
mh/M and γex denotes the non-radiative lifetime of the
excitation. The parameter a defines the cutoff of the integration
at ±π/a and is proportional to the size of the elementary cell of
the material of the wire. For small momentum q, the functions
are close to unity in all frequency ranges.

The light-matter coupling constant g can be estimated as29

g = |dcv|
√

h̄ωcav

2εε0V
≈

√
h̄2e2

εε0μL2
cL

, (13)

where ε and V = L2
cL are the dielectric permittivity and

the volume of the cavity, respectively, and the cavity length
parameters Lc and L are shown in the geometry sketch
(Fig. 1). Note that �0 ∼ L and g ∼ L−1/2, and the observable
quantities do not depend on the length of the system L.

The polarization operator �0 has both real and imaginary
parts, and the latter is related to the absorption coefficient of
the electron-hole interband excitation:29

α(ω) = 4πω

nc
χ ′′(ω) ∼ Im�0(q,ω), (14)

where χ ′′(ω) is the imaginary part of the optical susceptibility.
The dispersion of the elementary excitations of the coupled

quantum-wire–cavity system can be found from the poles of
the renormalized Green function of the cavity photon, account-
ing for the light-matter coupling D(q,ω). The corresponding
Dyson equation is shown in diagrammatic form in Fig. 2(c).
Its solution gives

D(q,ω) = D0(q,ω)

1 − g2D0(q,ω)�0(q,ω)
, (15)

and the equation for the new eigenenergies of the system reads

1 − g2D0(q,ω)�0(q,ω) = 0. (16)

III. RESULTS

We calculate the renormalized polarization operator of the
cavity-excitation system using Eq. (3), and find the energy
spectrum of the new modes. The absorption spectrum is
calculated from the imaginary part of � using Eq. (14), while
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FIG. 3. (Color online) (a) An absorption plot showing polariton
states formed by a microcavity photon and interband excitation in a
1D nanowire plotted for q corresponding to the anticrossing point.
(b) The dispersion of elementary excitations in the system. Both plots
are for one quantum wire and a photon lifetime of τph = 10 ps, which
corresponds to γcav = 0.4 meV. These parameters yield a Rabi energy
of h̄�R = 1.7 meV.

the dispersion relations are extracted from Eq. (16). We used
standard parameters for a GaAs sample in our calculations.

Figure 3 shows the absorption spectrum of the coupled
GaAs quantum-wire–cavity system and the dispersion relation
of the emergent polaritonic modes. The lifetime of the cavity
photon was taken as τph = 10 ps and the detuning of the cavity
mode is δ = −10 meV. One can clearly see the anticrossing of
the eigenmodes, characteristic of the strong-coupling regime.
The value of the Rabi splitting for parameters considered here
is about h̄�R = 1.7 meV for a single quantum wire embedded
in a microcavity. The formation of polaritons is also revealed
by a double-peak structure of the absorption spectrum shown
in Fig. 3(a).

The Rabi splitting can be enhanced by placing more than
one wire in the cavity. In this case the polarization operator
corresponding to a single wire, �0, should be replaced by
NQW�0, where NQW is the number of wires in the cavity.
The decrease of the quality of the cavity, corresponding to the
increase of the cavity mode broadening γcav, results in quench-
ing of the Rabi splitting. The corresponding dependence for
different values of NQW is shown in Fig. 4. The damping
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FIG. 4. (Color online) The Rabi splitting as a function of the
cavity photon damping constant γcav plotted for different numbers of
quantum wires N embedded in a semiconductor microcavity.

constant γcav scales from 0.1 to 10 meV on a logarithmic scale
which corresponds to lifetimes spanning from 40 to 0.4 ps,
which are possible to realize experimentally.

One can see that for γcav � 1 meV, which corresponds to
a typical quality factor of semiconductor cavities, more than
one wire is required for reaching the strong-coupling regime.
However, with recent improvement in nanotechnology, fabri-
cation of high-quality resonators with γcav ∼ 0.1 meV becomes
possible.30 This in principle can allow the achievement of
strong coupling for an individual wire.

IV. GEOMETRIC, FINITE-TEMPERATURE, AND
COULOMB CORRECTIONS

In the previous section we considered an idealized situation
corresponding to the case of zero temperature, neglecting
many-body effects and the placement of all the wires in the
antinode of the electric field of the cavity mode. In this section
we consider how deviations from these conditions affect the
result.

Position of the wires. Strictly speaking, the
√

NQW en-
hancement of the Rabi splitting is valid only for very thin
wires placed exactly at the antinode of the cavity. For realistic
systems we can calculate the Rabi splitting for an array of
quantum wires, accounting for the cavity mode structure. For
a single quantum wire placed in the center of a microcavity the
Rabi frequency is equal to g = h̄�max

R . The index max means
that the value of the electric field is maximal in the center of the
cavity (the antinode for a λ/2 cavity). However, for a square
cavity it changes with deviation from the antinode position as

�R(x) = �max
R cos(πx/Lc) cos(πy/Lc). (17)

We can estimate the generalized Rabi splitting for an array of
nanowires as

��
R =

√√√√ N∑
i=1

�R,i, (18)
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FIG. 5. (Color online) (a) Sketch of the quantum wire array
(QWA) embedded in a cavity. The yellow line shows the behavior
of the Rabi energy as a function of the confinement direction x.
(b) Dependence of the Rabi splitting on temperature calculated for
γcav = 0.4 meV.

where �R,i denotes the Rabi energy for each quantum
wire.

We calculate ��
R for NQW = 9 quantum wires for the

geometry sketched in Fig. 5(a). The diameter of the quantum
wire is chosen as LQW

x = 10 nm with 15 nm separation, and
the GaAs cavity width is Lc = 400 nm. The result gives
��

R = 2.97�max
R , which deviates by several percent only from

the simple estimation ��
R = √

NQW�max
R .

Finite temperature. To account for the finite temperature of
the system one can use the Matsubara representation of Green’s
functions written in imaginary time.31 The bare interband
polarization operator �0, accounting for temperature effects,
can be written as29

�0(0,ω) = 2
∫

dk

(2π/L)
(fv,k − fc,k)

[
1

h̄ω − Eg − h̄2k2

2μ
+ iγex

(19)

− 1

h̄ω + Eg + h̄2k2

2μ
− iγex

]
, (20)

where fv,k and fc,k are the Fermi distribution functions for the
valence and conduction band, respectively. Here for simplicity
we account only for vertical transitions (q → 0) and perform
numerical integration on the momentum k. The Rabi frequency
can then be calculated as in the zero-temperature case and is
plotted as a function of the temperature in Fig. 5(b). One can
see that with increasing temperatures up to room temperature
the Rabi frequency decreases only slightly. The system remains
in the strong light-matter coupling regime and 1D Van Hove
polaritons are still observable. A similar situation holds for
intersubband polaritons.22

Coulomb corrections. Previously we restricted our consid-
erations to the noninteracting case. However, in real systems
Coulomb interactions do play a role and can change the
spectrum of elementary excitations in the system. Accounting
for all possible interactions is an extremely complicated task
and usually can be done only within certain approximations.
For instance, accounting for excitonic resonances requires
the use of the ladder approximation.32 It leads to an integral
Bethe-Salpeter equation and represents a formidable problem
in itself. We do not address this problem in the present
work, assuming that the exciton transition lies far from the
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FIG. 6. (Color online) (a) Feynman diagrams corresponding to
RPA corrections to the polarization operator. The thick wiggly line
VS corresponds to the screened Coulomb interaction. (b) Absorption
spectrum of the cavity-wire system with Coulomb corrections taken
into account using the RPA.

bare interband transition and thus does not affect the optical
properties of the system in the frequency range we consider.

To estimate the influence of the Coulomb corrections we
use the RPA approximation32,33 shown in diagramatic form in
Fig. 6(a). The resulting equation for the renormalized interband
polarization operator is given by

�RPA = �0

1 − VS�0
, (21)

where VS denotes the screened Coulomb interaction calculated
in Ref. 33. Following the same procedure as before, we
substitute for the interband polarization operator �0 a modified
one, �RPA, and find that Coulomb corrections in the random-
phase approximation lead to a broadening and a slight shift of
the Van Hove singularity peak. However, the system remains in
the strong-coupling regime, as can clearly be seen in Fig. 6(b).

Finally, we should note that semiconductor quantum wires
can be replaced by carbon nanotubes, which are commonly
synthesized in bundles34 or can be arranged in well-aligned
arrays.35 In general, excitonic effects are very important in
semiconducting carbon nanotubes, as the presence of strongly
bound dark excitons results in luminescence suppression.36

However, tuning the cavity mode to the nanotube’s Van
Hove singularity should significantly improve light-matter
coupling. In quasimetallic nanotubes with small curvature-
induced band gaps and in metallic (armchair) nanotubes
with magnetic-field-induced gaps, excitonic effects can be
neglected;37 so that our theory of Van Hove polaritons
becomes directly applicable. Narrow-gap carbon nanotubes
have recently attracted significant attention as promising
candidates for terahertz applications.38–40 Metallic nanotubes
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with magnetic-field-induced gaps are of a particular interest,
since their spectra can be easily tuned by an external magnetic
field. Their similarity to a two-level system is further enhanced
by the fast decrease of the dipole transition matrix element
away from the field-induced band gap.41 Another system
for which the developed theory is highly relevant is a bulk
semiconductor with Van Hove singularities resulting from
quasi-one-dimensional motion along a quantizing magnetic
field. Carbon nanotubes in microcavities in both the optical
and terahertz frequency ranges as well as bulk materials with
magnetic-field-induced Van Hove singularities are subjects of
our future work.

V. CONCLUSIONS

In conclusion, we have studied the light-matter coupling
of a microcavity photon and an interband transition in a 1D

nanowire. Due to the resonant character of the absorption
spectrum provided by the Van Hove singularity of the 1D
density of states, the achievement of the strong-coupling
regime becomes possible even in the absence of excitonic
effects. We have calculated the dispersions of the resulting
polariton modes and the absorption spectra of the coupled
wire-cavity system for realistic values of parameters. We
have examined the influence of Coulomb corrections and
have shown that 1D Van Hove polaritons are robust against
temperature changes and can exist even at room temperature.

ACKNOWLEDGMENTS

This work was supported by the EU FP7 ITN Spin-
Optronics (Grant No. 237252) and the FP7 IRSES projects
SPINMET (Grant No. 246784) and QOCaN (Grant No.
316432). O.K. acknowledges support from the Eimskip Fund.

1A. V. Kavokin, J. J. Baumberg, G. Malpuech, and F. P. Laussy,
Microcavities (Oxford University Press, Oxford, 2007).

2S. M. Dutra, Cavity Quantum Electrodynamics (Wiley, Hoboken,
NJ, 2005).

3H. Walther, B. T. H. Varcoe, B.-G. Englert, and T. Becker, Rep.
Prog. Phys. 69, 1325 (2006).

4F. P. Laussy, E. del Valle, and C. Tejedor, Phys. Rev. Lett. 101,
083601 (2008).
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