these pairs of levels during the initial period of

time after the radiation is turned on instantaneously.

The fastest process which occurs in the system
is the 2s—2p vacancy transition, which results from
a Coster—Kroning process, and is characterized in
this case by a time (7-9)- 10717 s (Refs.1 and 2).
If the appearance of an M vacancy*»? does not
cause a change in the energy difference between
the 2p and ls levels of magnitude greater than the
width of the emission line, then the 2p vacancies
formed in this manner must be taken into considera-
tion in an analysis of the inversion question for
times of 10~ '*-10"*% s in this (Ref. 8). A problem
of this type arises in an analysis of ls—2p Auger
transitions of vacancies.®*~* The maximum pessible
role which could played by the Coster—Kroning
process can be evaluated under the assumption that
an L, vacancy goes instantaneously to the L ; and
L; levels, with respective probabilities f, ; and
fy,s (Refs. 1 and 2; a similar assumption was made
for sulfur in Ref. 8). The rate of the photoioniza-
tion production of 2p vacancies is then given by

Vigtny = Yeatn) " Fracn Ve, . (5)

where f, ; = 0.3 and f, , = 0.6-0.7 (Refs. 1 and 2).

It can bé seen from Table I that the values of
v'L,(3) differ from VL,(3) by about 30%, and the

possibility of satisfying condition (3) for t on the

order of 107'* s. remains:
or 0.5 v'[;-

We would thus expect that the application of
radiation with T = 10 keV to an atom with Z = 20-30
would result in the creation of a population inwver-
sion between the 2p and ls levels, and there would
be an induced amplification of the corresponding
emission, although an analysis of the induced ampli-
fication requires a more rigorous determination of
the vacancy concentration.*™?

We wish to thank O. V. Konstantinov for a
useful discussion of this work.
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Calculations of the mobility of charge carriers
in two-dimensional systems generally use the Born
approximation; i.e., the scattering potential is
treated as a perturbation. That appreach is not
always permissible, however.

In this letter we report the results of an exact
solution, by the phase-shift method, of the problem
of the secattering of a two-dimensional particle by a
short-range potential. We find a condition for the
applicability of the Born approximation for slow
two-dimensional particles and examine resonant scat-
tering in the two-dimensional case.
derived here are used to caleulate the mobility of
glectrons in a square quantum well.

Let us consider the scattering of two-dimensional

particles by an axisymmetric potental U( p), which
is nonzero in only a bounded region.
axis runs perpendicular to the plane of the motion
of the two-dimensional particles. Since the potential
is symmetric, we can separate variables in the ex-
pression for the wave function:

VP 9=, Ra(p)e ™.
mE=-g0 I 1 }

Outside the range of the scattering potential, the
radial function satisfies the free Bessel equation,
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whose general solution is

R} 8.n[095 8y T () 538 8 Wi )] » @

where &y is the scattering phase shift, which

characterizes the addition of a second, linearly
independent solution of the free equation — the
Neumann function Np(ke) — to the first — the
Bessel function Jy (k g).

A simple relationship between the effective
transport cross section and the scattering phase
shifts was derived for the two-dimensional case in
Ref. 1:

ot e e
The case of primary interest is the scattering

of slow particles, specifically, the case ka =« 1,
where a is the effective radius of the field U(g),
and the particle energy E = h *k*/2m®* is small in
comparison with |U(p)| within this radius. Scat-
tering cross section (3) is then dominated by the
phase shift &, (s-wave scattering), and the trans-
port scattering cross section is

&= I—:Q-m‘;,,
(4)
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FIG. 1. Mobility due to scattering of electrons in a square
quantum well by the roughness of the well boundaries versus the
energy of the elsctrons. 1) 44 < 0; &d > 0j 3) Borm-ap-
proximation result.

For the scattering of slow particles by a cir-
cular potential, U{ p) = U, for o < a and U(p) = 0
for p » a, we find the following result by joining
the logarithmic derivative of the wave function at
g = Aa:

tgdi — _:"/‘; == ) U <0; ()
ML-...._.J—' £
Tl (4,0)
B =X f2 k‘ﬂ }Q (6)
"f - ‘.E_ ol *:g

#a ka1, (kea)

Here k, = v2m* |l |/h, and c is Euler's constant.

The seattering cross section calculated from
(4)-(6) is thf same as the perturbation-theory result

g::—t"‘:f' a‘J when
'
|l - i

The condition for the applicability of the Born
approximation for slow particles in the two-dimen-
sional case, (7), differs from the known three-
dimensional conditior by a factor In~*(2e~C/ka).
In other words, the condition is more stringent in
this case and contains a dependence on the energy
of the particle being scattered.

In the opposite limit (scattering by an impene-
trable circle, k ,a »> 1), expressions (4) and (6) lead
to

ﬁ.-.j- 4 —
k ’*:—:;«‘{%} (8)
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It can be shown that for an arbitrary short-range
repulsive potential the cross section for the scatter-
ing of slow two-dimensional particles is again given
b{ expression (8), where a is the effective radius

of the potential. As the wave vector of the particle
being scattered approaches zero, scattering cross
section (8) increases without bound, instead of
approaching a finite limit (o = 47a®) as in the three-
dimensional case.

A case of particular interest is that of scatter-
ing by a potential well which contains a shallow s
level, i.e., the case of the resonant scattering of
two-dimensional particles. The scattering cross
section in this case depends on the ratio of the
energy of the two-dimensional particle, E, to the
energy of the shallow level, e:

PR s i
i k& .ﬁ--L; h"_‘-
T (9
The expression can be derived without difficulty
from (4), (3) and from the expression for the
energy of a shallow level in a sguare two-dimensional
well, but it is valid for an arbitrary potential well
with a shallow level. Although expression (9) is
quite different from the three-dimensional result
for the cross section for resonant scattering,? the
expression for o in the two-dimensional case has a
pole at E =— |e|, as in the three-dimensional case.

These results can be used to calculate the
mobility in a specific two-dimensional system con-
sisting of a square quantum well which is formed
by a narrow GaAs layer in a (GaAl) As solid solu-
tion. Figure 1 shows the calculated mobility due
to scattering by rough surfaces of a gquantum-well
layer as a function of the energy of the charge
carriers. We used the following values for the
parameters of the structure in these calculations:
layer thickness d = 30 A, roughness height ad =
+ 2.8 roughness radius a = 20 A, and roughness
surface concentration Ngg = 5-10'! em™. The upper
curve in Fig. 1 corresponds to the scattering by
a roughness which marrows the quantum-well layer,
i.e., to scattering by potential hills; the lower
curve corresponds to scattering by a roughness
which widens the layer (a scattering by potential
valleys); and the straight line shows the result of
the Born-approximation calculation.

The nature of the energy dependence of the
mobility determines the shape of the current—voltage
characteristic under heating conditions. According
to the Born approximation, heating does not affect
the mobility. A phase-shift calculation shows that
the mobility should decrease (the current—voltage
characteristic should be sublinear) as a result of
scattering by potential hills.

I wish to thank V.-I. Perel' for interest in
this study and for useful discussions.
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