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Abstract

We have created two sheets of ∼1 K phonons in liquid 4He at
∼55 mK such that they intersect each other as they move towards a
common point. If the two sheets have a small angle between them,
they interact strongly and create a hot line in the liquid helium. This
line is continuously fed with energy from the two sheets and loses
energy by creating high energy phonons. If the angle between the
sheets is larger than ∼ 30◦ they do not interact but pass through each
other. These results give direct evidence for the composition of the
sheets: they comprise strongly interacting low-energy phonons which
occupy a narrow cone in momentum space.

Phonon pulses have been created in cold liquid 4He over many years since
the initial work of Gernsey and Luszczynski in 1971 [1]. The pulses were
found to travel at the velocity of sound and so it was believed, that to first
order, the phonons were independent, non-interacting ballistic wave packets.
The liquid 4He was sufficiently cold that the ambient thermal phonons could
be ignored. However it was recognised that phonons could spontaneously
decay by the three phonon process (3pp) [2, 3], which is allowed by the
upward curvature of the dispersion curve [4, 5]. This picture was challenged
recently by Adamenko et al. [6, 7] who argued that a number of observations,
such as the creation of high energy phonons in the liquid, could be explained
if the phonons in the pulse were treated as strongly interacting and were
confined to a narrow cone in momentum space. This has prompted us to
look for evidence of the proposed phonon momentum distribution.

A short electrical pulse in a planar thin-film heater is usually used to
create a pulse of phonons. It was proposed [6, 7], that the phonons in the
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Figure 1: This shows the bolometer signals for the two separate pulses,
dashed-dot lines, and for the double pulse, solid line. the sharp peak at 40 µs
is due to the l-phonons and the signal after ≈ 43µs is due to h-phonons. The
sum of the signals from the two separate pulses is shown as the dotted line,
it can be seen to be about half that of the double pulse. The input pulses
are 100ns and 6.3mW

pulse interact by the three phonon process (3pp) [8] which is very rapid and
creates a thermal equilibrium with temperature T∼1 K, within the cone in
momentum space, in a time of order of 10−10 s [9]. The cone is thought to
arise because only phonons with a small angle θ3pp, typically 10◦ between the
two momentum vectors, interact by the 3pp. This causes the magnitude of
the cone angle to be ∼ θ3pp.

There is already some indirect evidence for this picture: the creation of
high energy phonons, (h-phonons) with energy ε >10K can be explained
by four phonon interactions between the low energy phonons (l-phonons)
within the pulse. Several properties of these h-phonons have been mea-
sured [10, 11, 12] and modelled theoretically [6, 7, 13]. Recently, it has
been found experimentally that the temperature of the phonon distribution
is uniform in the centre and decreases towards the edges of the pulse [14] and
this behaviour can also be explained within this picture [15].

Despite this indirect evidence for the properties of the phonon pulse,
there has been no previous direct confirmation of them. In this paper we
present remarkable experimental results which provide some compelling ev-
idence that the phonons are strongly interacting and occupy a narrow cone
in momentum space.

In figure 1 we show the signals from two heaters which are separated by
an angle α = 6◦. Signals from separate and simultaneous pulses to the two
heaters are shown. The dotted line is the sum of the two separate pulses. All
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Figure 2: For heaters with an angle between them of 6◦, the ratio of the
integrated signals from the double pulse to the sum of the integrated signals
from the separate pulses, is shown as a function of heater power (the reference
power is 0.5W, so -22, -19, -16 and -13dB correspond to 3.1, 6.3, 12.5 and
25mW respectively). The curves labelled l, h’, h and h” are integrated over
time intervals 40-43, 43-51.6, 43-73 and 51.6-73µs respectively. The pulse
durations are 100ns.

pulses are 100ns and 6.3 mW (-19dB). It can be seen that the fast l-phonon
peak, from simultaneous pulses, is twice as high as that of the sum of the two
separate pulses. This is perhaps surprising, as interactions usually scatter
phonons out of the beam and so reduce the signal. The slower h-phonon
signal, from the simultaneous pulses, is also substantially larger than the
sum of the separate pulses.

To quantify these increases we have integrated the signals between 41.0
and 44.0 µs for the l-phonons and between 44.0 and 73 µs for the h-phonons.
We divide this range at 51.6 µs to distinguish the faster h-phonon signal (
44.0 - 51.6 µs) from the slower one (51.6 - 73 µs). 51.6 µs is the propagation
time for a phonon with energy ε = 10 K (the fastest h-phonon) to go from
the heater to the bolometer. The time 73 µs is chosen to cover most of the
h-phonon signal without including the low level signal which comes from the
slow cooling of the glass heater substrate, after the heater pulse.

We define the ratio R = Sij/(Si + Sj) which is the fractional increase of
the integral of the the double pulse (Sij) over the sum of the integrals of the
two separate pulses (Si and Sj), see figure 1, during the same time interval.
The ratio is equal to 1 if there is no interaction. This ratio is shown as a
function of heater power in figure 2. We see that for the l-phonons R ∼ 2 and
for h-phonons R ∼ 1.3 but is substantially larger at lower power (R = 1.6)
than at high power (R = 0.9). We see too that the ratio for the faster h-
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phonons is higher than for the slower ones. The results for 50 ns pulses are
broadly similar to those for 100ns.

The two main features of these results that need explaining are: (a),
where the extra detected energy comes from and (b) why the extra h-phonon
signal arrives earlier than for single pulses. As the double-pulse energy is
equal to the sum of the energies in the two separate pulses, the increased
detected signal with the double pulse must be due to a concentration of the
injected energy onto the bolometer. We shall now describe how this occurs.

A short heater pulse, tp = 100 ns, creates a phonon sheet. The thickness
of the sheet is ctp where c is the velocity of sound; ctp = 238×10−7 = 24 µm.
At a distance from the heater, the width of the sheet is somewhat larger
than the heater width which is 1 mm × 1 mm. After 17 mm the sheet is
≈ 3 mm wide [14]. For <10 mm we estimate the sheet dimensions to be
2 mm × 2 mm × 24 µm, so a sheet is an accurate description.

Figure 3 illustrates the essential elements of the phonon sheets. Figure
3a shows a schematic picture of the phonon sheet created by a single heater.
The momentum of the phonons in the sheet, are in a cone with angle ∼ θ3pp,
as shown in figure 3b. The phonons have a temperature which falls in the
range ∼ 1.0 to ∼ 0.7 K: as they propagate they cool due to the creation of
h-phonons [7] and also due to transverse expansion of the sheet [15].

Our experiment probes one l-phonon sheet with another similar sheet.
The sheets are at a small angle α to each other as shown in figure 3c. The
effect of the interaction between the sheets is remarkable. Along the common
line of the two sheets a hot line of phonons is created. It will be noticed that
the sheets do not extend beyond this hot line because of the strong interac-
tions along the line of overlap of the two sheets. This process concentrates
the energy in the sheets as they move forward. In the absense of interactions,
each sheet would extend behind the other sheet, as shown in figure 3e.

The two cones in momentum space overlap, this is shown hatched in
figure 3d. The phonons in the overlap volume rapidly thermalise within a
time of order 10−10 s. This creates a new momentum cone, with angle ∼ θ3pp,
associated with the hot line, with its axis along the bisecting line of the cone
axes from the two sheets.

In figure 3e, we show two sheets with a large angle between them. In this
situation there is no interaction and the two sheets just pass through each
other. The two momentum cones, shown in figure 3f, do not overlap. The
narrow angle of the cone in momentum space will be confirmed by showing
that the two sheets do not interact if the angle between the sheets is too
large.

For the experiment, we arranged a set of heaters on an arc of a circle,
radius 10 mm, and a detector at the centre of the circle. The heaters are
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Figure 3: (a) shows schematically a phonon sheet moving in the z direction.
(b) shows the cone in momentum space occupied by the phonons in the sheet.
(c) shows two phonon sheets at a small angle to each other, the normals to
the two sheets are indicated. (d) the overlap of the two cones in momentum
space is shown. (e) shows two phonon sheets with a large angle between
them. Note that the sheets pass through each other. (f) shows the two
occupied cones separated. (g) shows schematically a plan view of the two
phonon sheets at different times. The sheets are created at time t1 and at t2
they start to touch and begin to create the hot line. For t > t2 the area of
the sheets decrease and their energy is fed into the hot line. The h-phonons,
created by the hot line, trail behind the two phonon sheets, but are not
shown.
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1 mm × 1 mm gold films on glass cover slips. Their resistance is ∼ 50Ω.
They can be pulsed individually or in pairs. The pulses are 50 or 100 ns
duration with powers in the range 3.1 mW (-22 dB) to 25 mW (-13 dB).
The superconducting zinc film detector is cut into a serpentine track to give
an operating resistance of ∼50Ω. It is held at a constant temperature by an
electronic feedback signal which self-heats the zinc and indicates the phonon
energy flux, [16, 17, 18]. The dominant time constant of the detector system
is ≈1.5 µs. Many pulses are averaged together to increase the signal to noise
ratio using a Tektronix DSA 601A. The helium is isotopically pure [19] and
at a temperature ∼55 mK.

Figure 3g shows a plan view of the spatial positions of the two phonon
sheets at a series of times. At time t1 the sheets are just formed at the heater.
At time t2 the edges of the sheets just touch. This overlap of the sheets starts
the creation of a line of higher density phonons, a hot line, along their com-
mon line. This is the beginning of an extraordinary process: the interactions
between the phonons in the sheets are so strong that the interacting phonons
are assimilated into a new population with its own momentum cone, with its
axis along the bisecting line. For t > t2 the hot line moves forward along the
bisecting line and the sheets get smaller as their energy is fed into the hot
line.

The hot line does not continuously get hotter as it quickly reaches a
temperature where the rate of energy loss due to the creation of h-phonons
equals the rate of gain of energy from the two sheets. h-phonons are created
all the way from the position at t2 to the bolometer. It is this property which
accounts for the fast h-phonon signal; as the hot line moves with velocity c,
so h-phonons created near the bolometer arrive just after the l-phonon signal
from the two sheets. This sustained source of h-phonons contrasts with the
h-phonons produced by a single sheet. In this case, the sheet cools as it
moves from the heater towards the bolometer so the h-phonon production
decreases with distance from the heater . This makes the average h-phonon
signal slower than with the hot line; this is clearly visible in figure 1.

The higher density of l-phonons in the hot line causes the increase in
the l-phonon signal. The measurements show that there is as much energy
from the hot line as in the area of the sheets that are separately incident on
the bolometer. In separate pulses, the sheets are wider than the bolometer
so only a fraction of each phonon sheet is incident on the bolometer. In a
double pulse some of this energy, that would otherwise miss the bolometer,
is collected by the hot line. If the phonon sheet is 2mm × 2mm then the
energy in an extra 0.5 mm2 area of each sheet falls on the bolometer which
has an area of 1 mm2. This gives a 50% increase in signal. This fraction
is independent of the angle α between the sheets so long as α < θ3pp and
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Figure 4: For heaters with an angle α between them of 26◦, the ratio R of
the integrated signals from the double pulse to the sum of the integrated
signals from the separate pulses, is shown as a function of heater power (the
reference power is 0.5 W, so -22, -19, -16 and -13 dB correspond to 3.1, 6.3,
12.5 and 25 mW respectively). The curves labelled l, h’ ,h, h” are integrated
over time intervals 40-43, 43-51.6, 43-73 and 51.6-73 µs respectively. The
pulse durations are 100 ns.

the bolometer is at the centre of curvature. This simple geometric argument
leaves out the effects of the expansion of the phonon sheet and the hot line.
The transverse expansion of the phonon sheet means the separate l-phonon
signals are smaller but the hot line still collects up the same fraction of the
sheets so the ratio Sij/(Si +Sj) will be larger. The estimate thus agrees with
the measurements.

An important feature of our picture is that the phonons in the sheet are
in a narrow cone in momentum space. This can be tested by varying the
angle between the two sheets as there should be no interactions between
them when the two cones in momentum space do not overlap. We define
θ3pp, in the 3pp scattering l1 ↔ l2 +l3, as the angle between l2 and l1 when l2
and l3 have the same energy ε1/2. For a phonon distribution at temperature
T , 0.8 of the phonons have energy ε < 4T so we use this energy to evaluate
θ3pp. So for example, using the measurements of the upward dispersion [21],
when T = 1 K, ε1 = 4 K and θ3pp = 9.7◦

In reality, the cones do not have a sharp boundary because there are 3pp
interactions where ε2 >> ε3 which have a larger angle between them. In the
example above, the maximum included angle between l2 and l3 is 20◦, but
the probability of this process is much lower than for ε2 = ε3. These angles
scale roughly with T for T < 1K. The phonons in the high energy tail of the
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distribution can have somewhat larger angles; the maximum θ3pp=12◦ and
the maximum included angle is 24◦.

Significant overlap of the cones requires α < 2θ3pp. This is confirmed by
the two heaters with α = 46◦ where we find no interaction at all: the signals
from double pulses are equal to the sum of the signals from two separate
pulses.

When the angle between the two heaters is α = 26◦ the situation is
marginal. With low power pulses, 100 µs, 6.3 mW (-19 dB), there is little
interaction, but for higher powers, 12.5 (-16 dB) and 25 mW (-13 dB) there
is an increasing interaction shown by the ratio R = Sij / (Si +Sj) > 1. We
show this in figure 4 which is in stark contrast to figure 2. When α = 26◦

only the value of R for the l-phonons shows an increase; the h-phonons have
R ∼ 1 and even R < 1. It is, of course, much easier to get an increase in the
l-phonon ratio than the h-phonon ratio because the l-phonon signal can be
increased by an interaction between the sheets just in front of the bolometer.
In contrast, the h-phonon signal depends on interactions occuring over a
substantial fraction of the flight path.

In conclusion, we have shown that l-phonon sheets interact when the angle
between them is small, but not when it is large. This is direct evidence that
the phonons in the sheet occupy a narrow cone in momentum space with a
cone angle, typically ∼ 10◦. When the angle between the sheets is small, the
interaction between the sheets is strong and leads to a hot line in the liquid
helium. This line moves at the velocity c=238 m s−1 along the bisecting line,
between the two normals to the heaters. The hot line is continuously fed
with energy from the decreasing area of the sheets, and it loses energy by
creating h-phonons. The hot line will be in dynamic equilibrium and at an
essentially constant temperature over its path. The creation of the hot line
collects energy from the sheets which would otherwise miss the bolometer.
This leads to higher l- and h-phonon signals than the sum of the two separate
signals.

We see this behaviour when the angle between the sheets is 6◦. When the
angle between the sheets is 26◦, there are interactions when the pulse power
is high, but not when it is low. In this marginal case, the slightly larger
width of the cone at higher powers can initiate interactions which lead to
increasingly stronger interactions. When the angle is 46◦ we find that there
are no interactions.

This striking behaviour can be understood if the phonons in the sheets
are both in a narrow momentum cone and are strongly interacting. This is
the most direct evidence to date for the properties of the phonon sheet that
has been postulated and used to explain several diverse experimental results.
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